University of Debrecen
 Faculty of Science and Technology
 Institute of Mathematics

MATHEMATICS BSC PROGRAM

TABLE OF CONTENTS

DEAN'S WELCOME 3
UNIVERSITY OF DEBRECEN 4
FACULTY OF SCIENCE AND TECHNOLOGY 5
DEPARTMENTS OF INSTITUTE OF MATHEMATICS 6
ACADEMIC CALENDAR 8
THE MATHEMATICS BACHELOR PROGRAM 9
Information about Program 9
Completion of the Academic Program 11
The Credit System 11
Model Curriculum of Mathematics BSc Program 12
Work and Fire Safety Course 15
Physical Education 15
Pre-degree certification 15
Thesis 15
Final Exam 16
Diploma 17
Course Descriptions of Mathematics BSc Program 18

DEAN'S WELCOME

Welcome to the Faculty of Science and Technology!

This is an exciting time for you, and I encourage you to take advantage of all that the Faculty of Science and Technology UD offers you during your bachelor's or master's studies. I hope that your time here will be both academically productive and personally rewarding
Being a regional centre for research, development and innovation, our Faculty has always regarded training highly qualified professionals as a priority. Since the establishment of the Faculty in 1949, we have traditionally been teaching and working in all aspects of Science and have been preparing students for the challenges of teaching. Our internationally renowned research teams guarantee that all students gain a high quality of expertise and knowledge. Students can also take part in research and development work, guided by professors with vast international experience.
While proud of our traditions, we seek continuous improvement, keeping in tune with the challenges of the modern age. To meet the demand of the job market for professionals, we offer engineering courses with a strong scientific basis, thus expanding our training spectrum in the field of technology. Based on the fruitful collaboration with our industrial partners, recently, we successfully introduced dual-track training programmes in our constantly evolving engineering courses.
We are committed to providing our students with valuable knowledge and professional work experience, so that they can enter the job market with competitive degrees. To ensure this, we maintain a close relationship with the most important national and international companies. The basis for our network of industrial relationships are in our off-site departments at various different companies, through which market participants - future employers - are also included in the development and training of our students.

Prof. Dr. Ferenc Kun

Dean

UNIVERSITY OF DEBRECEN

Date of foundation: 1912 Hungarian Royal University of Sciences, 2000 University of Debrecen
Legal predecessors: Debrecen University of Agricultural Sciences; Debrecen Medical University; Wargha István College of Education, Hajdúböszörmény; Kossuth Lajos University of Arts and Sciences

Legal status of the University of Debrecen: state university
Founder of the University of Debrecen: Hungarian State Parliament
Supervisory body of the University of Debrecen: Ministry of Education

Number of Faculties at the University of Debrecen: 13
Faculty of Agricultural and Food Sciences and Environmental Management
Faculty of Child and Special Needs Education
Faculty of Dentistry
Faculty of Economics and Business
Faculty of Engineering
Faculty of Health
Faculty of Humanities
Faculty of Informatics
Faculty of Law
Faculty of Medicine
Faculty of Music
Faculty of Pharmacy
Faculty of Science and Technology

Number of students at the University of Debrecen: 29,777

Full time teachers of the University of Debrecen: 1,587
203 full university professors and 1,249 lecturers with a PhD .

FACULTY OF SCIENCE AND TECHNOLOGY

The Faculty of Science and Technology is currently one of the largest faculties of the University of Debrecen with about 2,500 students and more than 200 staff members. The Faculty has got 6 institutes: Institute of Biology and Ecology, Institute of Biotechnology, Institute of Chemistry, Institute of Earth Sciences, Institute of Physics and Institute of Mathematics. The Faculty has a very wide scope of education dominated by science and technology (12 Bachelor programs and 14 Master programs), additionally it has a significant variety of teachers' training programs. Our teaching activities are based on a strong academic and industrial background, where highly qualified teachers with a scientific degree involve student in research and development projects as part of their curriculum. We are proud of our scientific excellence and of the application-oriented teaching programs with a strong industrial support. The number of international students of our faculty is continuously growing (currently ~ 790 students). The attractiveness of our education is indicated by the popularity of the Faculty in terms of incoming Erasmus students, as well.

THE ORGANIZATIONAL STRUCTURE OF THE FACULTY

Dean: Prof. Dr. Ferenc Kun, Full Professor

E-mail: ttkdekan@science.unideb.hu
Vice Dean for Educational Affairs: Prof. Dr. Gábor Kozma, Full Professor
E-mail: kozma.gabor@science.unideb.hu
Vice Dean for Scientific Affairs: Prof. Dr. Sándor Kéki, Full Professor
E-mail: keki.sandor@science.unideb.hu
Consultant on External Relationships: Prof. Dr. Attila Bérczes, Full Professor
E-mail: berczesa@science.unideb.hu
Consultant on Talent Management Programme: Prof. dr. Tibor Magura, Full Professor
E-mail: magura.tibor@science.unideb.hu
Dean's Office
Head of Dean's Office: Mrs. Katalin Kozma-Tóth
E-mail: toth.katalin@science.unideb.hu
English Program Officer: Mrs. Alexandra Csatáry
Address: 4032 Egyetem tér 1., Chemistry Building, A/101, E-mail: acsatary@ science.unideb.hu
E-mail: vargaimre@unideb.hu

DEPARTMENTS OF INSTITUTE OF MATHEMATICS

Department of Algebra and Number Theory (home page: https://math.unideb.hu/en/introduction-department-algebra-and-number-theory)

4032 Debrecen, Egyetem tér 1, Geomathematics Building

Name	Position	E-mail	room
Prof. Dr. Attila Bérczes	University Professor, Head of Department	berczesa@science.unideb.hu	M415
Prof. Dr. István Gaál	University Professor	gaal.istvan@unideb.hu	M419
Prof. Dr. Lajos Hajdu	University Professor	hajdul@science.unideb.hu	M416
Prof. Dr. Ákos Pintér	University Professor	apinter@science.unideb.hu	M417
Dr. Szabolcs Tengely	Associate Professor	tengely@science.unideb.hu	M415
Dr. András Bazsó	Assistant Professor	bazsoa@science.unideb.hu	M407
Dr. Gábor Nyul	Assistant Professor	gnyul@science.unideb.hu	M405
Dr. István Pink	Associate Professor	pinki@science.unideb.hu	M405
Dr. Nóra Györkös- Varga	Assistant Lecturer	nvarga@science.unideb.hu	M417
Dr. Gabriella Rácz	Assistant Lecturer	racz.gabriella@science.unideb.hu	M404
Dr. László Remete	Assistant Lecturer	remete.laszlo@science.unideb.hu	M406
Dr. Eszter Szabó- Gyimesi	Assistant Lecturer	gyimesie@science.unideb.hu	M404
Ms. Tímea Arnóczki	PhD student	arnoczki.timea@science.unideb.hu	M404
Ms. Orsolya Herendi	PhD student	herendi.orsolya@science.unideb.hu	M407
Mr. Ágoston Papp	PhD student	papp.agoston@science.unideb.hu	M408
Mr. Péter Sebestyén	PhD student	sebestyen.peter@science.unideb.hu	M408

Department of Analysis (home page: https://math.unideb.hu/en/introduction-department-analysis)
4032 Debrecen, Egyetem tér 1, Geomathematics Building

Name	Position	E-mail	room
Dr. Zoltán Boros	Associate Professor, Head of Department	zboros@science.unideb.hu	M326
Prof. Dr. Zsolt Páles	University Professor	pales@ science.unideb.hu	M321
Prof. Dr. György Gát	University Professor	gat.gyorgy@ science.unideb.hu	M324
Dr. Mihály Bessenyei	Associate Professor	besse@science.unideb.hu	M326
Dr. Eszter Novák- Gselmann	Associate Professor	gselmann@ science.unideb.hu	M325
Dr. Borbála Fazekas	Assistant Professor	borbala.fazekas@science.unideb.hu	M325
Dr. Rezső László Lovas	Assistant Professor	lovas@science.unideb.hu	M330
Dr. Fruzsina Mészáros	Assistant Professor	mefru@science.unideb.hu	M325
Dr. Gergő Nagy	Assistant Professor	nagyg@science.unideb.hu	M328
Dr. Tibor Kiss	Assistant Lecturer	kiss.tibor@science.unideb.hu	M328
Mr. Richárd Grünwald	PhD student	richard.grunwald@science.unideb.hu	M322
Mr. Gábor Marcell Molnár	PhD student	molnar.gabor.marcell@ science.unideb.hu	M322
Ms. Evelin Pénzes	PhD student	penzes.evelin@science.unideb.hu	M319
Mr. Norbert Tóth	PhD student	toth.norbert@science.unideb.hu	M323
Mr. Péter Tóth	PhD student	toth.peter@science.unideb.hu	M322

Department of Geometry (home page: https://math.unideb.hu/en/introduction-departmentgeometry)
4032 Debrecen, Egyetem tér 1, Geomathematics Building

Name	Position	E-mail	room
Dr. Zoltán Muzsnay	Associate Professor, Head of Department	muzsnay@science.unideb.hu	M305
Dr. Ágota Figula	Associate Professor	figula@ science.unideb.hu	M303
Dr. Eszter Herendiné Kónya	Associate Professor	eszter.konya@ @science.unideb.hu	M307
Dr. Zoltán Kovács	Associate Professor	kovacsz@science.unideb.hu	M306
Dr. László Kozma	Associate Professor	kozma@unideb.hu	M306
Dr. Csaba Vincze	Associate Professor, Director of Institute	csvincze@science.unideb.hu	M304
Dr. Tran Quoc Binh	Senior Research Fellow	binh@science.unideb.hu	M305
Dr. Zoltán Szilasi	Assistant Professor	szilasi.zoltan@science.unideb.hu	M329
Dr. Ábris Nagy	Assistant Lecturer	abris.nagy@science.unideb.hu	M304
Ms. Emőke Báró	PhD student	baro.emoke@science.unideb.hu	-
Mr. Máton Kiss	PhD student	kiss.marton@science.unideb.hu	M308
Ms. Orsolya Lócska	PhD student	locska.orsolya@science.unideb.hu	M308
Ms. Anna Muzsnay	PhD student	muzsnay.anna@science.unideb.hu	M404
Mr. Márk Oláh	PhD student	olah.mark@ science.unideb.hu	M329
Ms. Gabriella Papp	PhD student	papp.gabriella@science.unideb.hu	-

ACADEMIC CALENDAR

General structure of the academic semester (2 semesters/year):

Study period	$1^{\text {st }}$ week	Registration*	1 week
	$2^{\text {nd }}-15^{\text {th }}$ week	Teaching period	14 weeks
Exam period	directly after the study period	Exams	7 weeks

*Usually, registration is scheduled for the first week of September in the fall semester, and for the first week of February in the spring semester.

For further information please check the following link:
https://www.edu.unideb.hu/tartalom/downloads/University_Calendars_2023_24/University_calendar_2023-2024-Faculty_of_Science_and_Technology.pdf?_ga=2.243703237.1512753347.1689488152-28702506.1689488059

THE MATHEMATICS BACHELOR PROGRAM

Information about the Program

Name of BSc Program:	Mathematics BSc Program
Specialization available:	
Field, branch:	Science
Qualification:	Mathematician
Mode of attendance:	Full-time
Faculty, Institute:	Faculty of Science and Technology Institute of Mathematics
Program coordinator:	Prof. Dr. György Gát, University Professor
Duration:	6 semesters
ECTS Credits:	180

Objectives of the BSc program:

The aim of the Mathematics BSc program is to train professional mathematicians who have deep knowledge on theoretical and applied mathematics that makes them capable of using their basic mathematical knowledge on the fields of engineering, economics, statistics and informatics. They are prepared to continue to study in an MSc program.

Professional competences to be acquired

A Mathematician:

a) Knowledge:

- He/she knows the basic methods of mathematics in the fields of analysis, algebra, geometry, discrete mathematics, operations research and probability theory (statistics).
- He/she knows the basic correlations in pure mathematics, related to the fields of analysis, algebra, geometry, discrete mathematics, operations research and probability theory (statistics).
- $\mathrm{He} /$ she knows the basic correlations between different subdisciplines of mathematics.
- $\mathrm{He} /$ she is aware of the requirements of defining abstract concepts, he/she recognises general patterns and concepts inherited in the problems applied.
$-\mathrm{He} /$ she knows the requirements and basic methods of mathematical proofs.
- He/she is aware of the specific features of mathematical thinking.

b) Abilities:

- He/she is capable of formulating and communicating true and logical mathematical statements, as well as, how to exactly indicate their conditions and main consequences.
- He/she is capable of drawing conclusions of the qualitative type from quantitative data.
- He/she is capable of applying his/her factual knowledge acquired in the fields of analysis, algebra, geometry, discrete mathematics, operations research and probability theory (statistics).
- $\mathrm{He} /$ she is capable of finding and exploring new correlations in the fields of analysis, algebra, geometry, discrete mathematics, operations research and probability theory (statistics).
- He/she is capable of going beyond the concrete forms of problems, and formulating them both in abstract and general forms for the sake of analysis and finding a solution.
- He/she is capable of designing experiments for the sake of data collection, as well as, of analysing the results achieved by the means of mathematics and informatics.
- He/she is capable of making a comparative analysis of different mathematical models.
- He/she is capable of effectively communicating the results of mathematical analyses in foreign languages, and by the means of informatics.
- He/she is capable of identifying routine problems of his/her own professional field, using the scientific literature available (library and electronic sources) and adapting their methods to find theoretical and practical solutions
c) Attitude:
- He/she desires to enhance the scope of his/her mathematical knowledge by learning new concepts, as well as, for acquiring and developing new competencies.
- He/she aspires to apply his/her mathematical knowledge as widely as possible.
- Applying his/her mathematical knowledge, he/she aspires to get acquainted with the perceptible phenomena in the most thorough way possible, and to describe and explain the principles shaping them.
- Using his/her mathematical knowledge, he/she aspires to apply scientific reasoning.
- He/she is open to recognizing the specific problems in professional fields other than his/her own field and makes an effort to cooperate with experts of these fields, to the end of proposing a mathematical adaptation of field-specific problems.
$-\mathrm{He} /$ she is open to continuing professional training and development in the field of mathematics.

d) Autonomy and responsibility:

- Using his/her basic knowledge acquired in mathematical subdisciplines, he/she is capable of formulating and analysing mathematical questions on his/her own.
- He/she responsibly assesses mathematical results, their applicability and the limits of their applicability.
- $\mathrm{He} /$ she is aware of the value of mathematical-scientific statements, their applicability and the limits of their applicability.
- He/she is capable of making decisions on his/her own, based on the results of mathematical analyses.
- He/she is aware that he/she must carry out his/her own professional work in line with the highest ethical standards and ensuring a high level of quality.
- He/she carries out his/her theoretical and practical research activities related to different fields of mathematics, with the necessary guidance, on his/her own.

Completion of the BSc Program

The Credit System

Majors in the Hungarian Education System have generally been instituted and ruled by the Act of Parliament under the Higher Education Act. The higher education system meets the qualifications of the Bologna Process that defines the qualifications in terms of learning outcomes: statements of what students know and can do on completing their degrees. In describing the cycles, the framework uses the European Credit Transfer and Accumulation System (ECTS).
ECTS was developed as an instrument of improving academic recognition throughout the European Universities by means of effective and general mechanisms. ECTS serves as a model of academic recognition, as it provides greater transparency of study programs and student achievement. ECTS in no way regulates the content, structure and/or equivalence of study programs.
Regarding each major the Higher Education Act prescribes which professional fields define a certain training program. It contains the proportion of the subject groups: natural sciences, economics and humanities, subject-related subjects and differentiated field-specific subjects.

During the program students have to complete a total amount of 120 credit points. It means approximately 30 credits per semester. The curriculum contains the list of subjects (with credit points) and the recommended order of completing subjects which takes into account the prerequisite(s) of each subject. You can find the recommended list of subjects/semesters in chapter "Model Curriculum of Mathematics BSc Program".

Model Curriculum of Mathematics BSc Program

	semesters						ECTS creditpoints	evaluation
	1.	2.	3.	4.	5.	6.		
	contact hours, types of teaching (l-lecture, p - practice), credit points							
Linear algebra subject group								
Linear algebra 1. Dr. Gaál István	$\begin{array}{r} 28 \mathrm{l} / 3 \mathrm{cr} . \\ 28 \mathrm{p} / 2 \mathrm{cr} . \\ \hline \end{array}$						5	exam mid-semester grade
Linear algebra 2. Dr. Gaál István		$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} \text {. } \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \\ & \hline \end{aligned}$					5	exam mid-semester grade
Classical algebra subject group								
Introduction to Algebra and Number Theory Dr. Pintér Ákos	$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} . \\ & 42 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$						6	exam mid-semester grade
Algebra 1. Dr. Remete László		$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \\ & \hline \end{aligned}$					5	exam mid-semester grade
Algebra 2. Dr. Remete László			$\begin{array}{\|l\|} \hline 28 \mathrm{l} / 3 \mathrm{cr} \\ 28 \mathrm{p} / 2 \mathrm{cr} \\ \hline \end{array}$				5	exam mid-semester grade
Classical finite mathematics subject group								
Number theory Dr. Hajdu Lajos			$\begin{array}{\|l\|} \hline 28 \mathrm{l} / 3 \mathrm{cr} . \\ 28 \mathrm{p} / 2 \mathrm{cr} \\ \hline \end{array}$				5	exam mid-semester grade
Combinatorics and graph theory Dr. Nyul Gábor	$\begin{aligned} & 42 \mathrm{l} / 4 \mathrm{cr} \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$						6	exam mid-semester grade
Classical analysis subject group								
Foundations of analysis Dr. Lovas Rezső	$28 \mathrm{p} / 2 \mathrm{cr}$.						2	mid-semester grade
Introduction to analysis Dr. Bessenyei Mihály		$\begin{aligned} & 42 \mathrm{l} / 5 \mathrm{cr} \text {. } \\ & 42 \mathrm{p} / 3 \mathrm{cr} \text {. } \end{aligned}$					8	exam mid-semester grade
Differential and integral calculus Dr. Bessenyei Mihály			$\begin{array}{\|c\|} \hline 42 \mathrm{l} / 5 \mathrm{cr} . \\ 42 \mathrm{p} / 3 \mathrm{cr} \end{array}$				8	exam mid-semester grade
Sets, functions, real numbers Dr. Lovas Rezsó			$28 \mathrm{l} / 3 \mathrm{cr}$.				3	exam

Differential and integral calculus in several variables Dr. Páles Zsolt				$42 \mathrm{l} / 5 \mathrm{cr}$. $42 \mathrm{p} / 3 \mathrm{cr}$.			8	exam mid-semester grade
Ordinary differential equations Dr. Gát György					$281 / 4 \mathrm{cr}$. $28 \mathrm{p} / 2 \mathrm{cr}$.		6	exam mid-semester grade

Classical geometry subject group							
Geometry 1. Dr. Vincze Csaba	$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$					5	exam mid-semester grade
Geometry 2. Dr. Vincze Csaba		$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} \text {. } \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$				5	exam mid-semester grade
Differential geometry Dr. Muzsnay Zoltán				$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$		5	exam mid-semester grade
Vector analysis Dr. Vincze Csaba					$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$	5	exam mid-semester grade

Finite mathematical algorithms subject group					
Algorithms Dr. Györkös-Varga Nóra	$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \\ & \hline \end{aligned}$			5	exam mid-semester grade
Applied number theory Dr. Hajdu Lajos		$42 \mathrm{l} / 3 \mathrm{cr}$.		3	exam
Algorithms in algebra and number theory Dr. Tengely Szabolcs		$42 \mathrm{p} / 3 \mathrm{cr}$.		3	mid-semester grade
Introduction to cryptography Dr. Bérczes Attila			$\begin{gathered} 28 \mathrm{l} / 3 \mathrm{cr} . \\ 28 \mathrm{p} / 2 \mathrm{cr} . \end{gathered}$	5	$\begin{gathered} \text { exam } \\ \text { mid-semester grade } \\ \hline \end{gathered}$

Applied analysis subject group

Numerical analysis Dr. Fazekas Borbála			$\begin{aligned} & 42 \mathrm{l} / 4 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$			6	exam mid-semester grade
Economic mathematics Dr. Mészáros Fruzsina					$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} \end{aligned}$	5	exam mid-semester grade
Computer mathematics subject group							
Analysis with computer Dr. Fazekas Borbála					$42 \mathrm{p} / 3 \mathrm{cr}$	3	mid-semester grade
Computer statistics Dr. Sikolya-Kertész Kinga					$28 \mathrm{p} / 2 \mathrm{cr}$	2	mid-semester grade
Computer geometry Dr. Nagy Ábris		$42 \mathrm{p} / 3 \mathrm{cr}$				3	mid-semester grade
Optimizing subject group							
Linear programming Dr. Mészáros Fruzsina		$\begin{array}{\|l\|} \hline 28 \mathrm{l} / 3 \mathrm{cr} \\ 28 \mathrm{p} / 2 \mathrm{cr} \\ \hline \end{array}$				5	exam mid-semester grade
Basics of earth sciences and mathematics subject group							
Basics of mathematics Dr. Györkös- Varga Nóra	$14 \mathrm{p} / 0 \mathrm{cr}$.					0	signature
Classical mechanics Dr. Erdélyi Zoltán			$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} . \\ & 14 \mathrm{p} / 1 \mathrm{cr} . \end{aligned}$			4	exam
Theoretical mechanics Dr. Nagy Sándor					$\begin{aligned} & 28 \mathrm{l} / 3 \mathrm{cr} \\ & 14 \mathrm{p} / 1 \mathrm{cr} \\ & \hline \end{aligned}$	4	exam
European Union studies Dr. Teperics Károly	$14 \mathrm{p} / 1 \mathrm{cr}$.					1	exam
Basic environmental science Dr. Nagy Sándor Alex	$14 \mathrm{p} / 1 \mathrm{cr}$.					1	exam
Thesis I.				5 cr .		5	mid-semester grade
Thesis II.					5 cr .	5	mid-semester grade

optional courses

optional courses							9	

According to the Rules and Regulations of the University of Debrecen, a student has to complete the online course for work and fire safety. Registration for the course and completion are necessary for obtaining the pre-degree certificate.
Students have to register for the subject MUNKAVEDELEM in the Neptun system.
They must read an online material until the end to get the signature on Neptun for the completion of the course. The number of credit points for the course is 1 . The link of the online course is available on the webpage of the Faculty.

Physical Education

According to the Rules and Regulations of the University of Debrecen, a student has to complete Physical Education courses at least in two semesters during his/her Bachelor's training. The number of credit points for those courses is 1 per semester. Our University offers a wide range of facilities to complete them. Further information is available from the Sports Centre of the University, its website is: http://sportsci.unideb.hu.

Pre-degree Certification

A pre-degree certificate is issued by the Faculty after completion of the bachelor's (BSc) program. The pre-degree certificate can be issued if the student has successfully completed the study and exam requirements as set out in the curriculum, the requirements relating to Physical Education as set out in Section 10 in Rules and Regulations, internship (mandatory) - with the exception of preparing the thesis - and gained the necessary credit points (180). The pre-degree certificate verifies (without any mention of assessment or grades) that the student has fulfilled all the necessary study and exam requirements defined in the curriculum and the requirements for Physical Education. Students who obtained the pre-degree certificate can submit the thesis and take the final exam.

Thesis

Students have to choose a topic for their thesis two semesters before the expected date of finishing their studies, i.e., usually at the end of the 4th semester. They have to write it in two semesters, and they have to register for the courses 'Thesis 1 ' and 'Thesis 2 ' in two different semesters. They write the thesis with the help of a supervisor who should be a lecturer of the Institute of Mathematics. (In exceptional cases, the supervisor can be a member of another institute.)
Students are not required to present new scientific results, but they have to do some scientific work on their own. The thesis should be about 20-40 pages long and using the LaTeX document preparation system is recommended. The cover page has to contain the name of the institute,
the title of the thesis, the name and the degree program of the student, the name and the university rank of the supervisor. Beside the detailed discussion of the topic, the thesis should contain an introduction, a table of contents and a bibliography. The thesis has to be defended in the final exam.

Final Exam

The final exam is an oral exam before a committee designated by the Director of the Institute of Mathematics and approved by the leaders of the Faculty of Science and Technology. The final exam consists of two parts: an account by the student on a certain exam question, and the defense of the thesis. The questions of the final exam comprise the compulsory courses of the Mathematics BSc Program. The student draws a random question from the list, and after a certain preparation period, gives an account on it. After this, the committee may ask questions also from other topics. The student gets three separate grades for their answers on the exam question, for the thesis and for the defense of the thesis.

Final Exam Board

Board chair and its members are selected from the acknowledged internal and external experts of the professional field. Traditionally, it is the chair and in case of his/her absence or indisposition the vice-chair who will be called upon, as well. The board consists of - beside the chair - at least two members (one of them is an external expert), and questioners as required. The mandate of a Final Examination Board lasts for one year.

Repeating a failed Final Exam

If any part of the final exam is failed it can be repeated according to the rules and regulations. A final exam can be retaken in the forthcoming final exam period. If the Board qualified the thesis unsatisfactory a student cannot take the final exam and he has to make a new thesis. A repeated final exam can be taken twice on each subject.

Diploma

The diploma is an official document decorated with the coat of arms of Hungary which verifies the successful completion of studies in the Mathematics Bachelor Program. It contains the following data: name of HEI (higher education institution); institutional identification number; serial number of diploma; name of diploma holder; date and place of his/her birth; level of qualification; training program; specialization; mode of attendance; place, day, month and year issued. Furthermore, it has to contain the rector's (or vice-rector's) original signature and the seal of HEI. The University keeps a record of the diplomas issued.

In Mathematics Bachelor Master Program the diploma grade is calculated as the average grade of the results of the followings:

- Weighted average of the overall studies at the program (A)
- Average of grades of the thesis and its defense given by the Final Exam Board (B)
- Average of the grades received at the Final Exam for the two subjects (C)

Diploma grade $=(\mathrm{A}+\mathrm{B}+\mathrm{C}) / 3$

Classification of the award on the bases of the calculated average:

Excellent	$4.81-5.00$
Very good	$4.51-4.80$
Good	$3.51-4.50$
Satisfactory	$2.51-3.50$
Pass	$2.00-2.50$

Course Descriptions of Mathematics BSc Program

Title of course: Linear algebra 1.
ECTS Credit points: 3
Code: TTMBE0102
Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: TTMBE0103, TTMBE0607, TTMBE0209, TTMBG0701

Topics of course

Basic notions in algebra. Determinants. Operations with matrices. Vector spaces, basis, dimension. Linear mappings. Transformation of basis and coordinates. The dimensions of the row space and the column space of matrices are equal. Sum and direct sum of subspaces. Factor spaces. Systems of linear equations. Matrix of a linear transformation. Operations with linear transformations. Similar matrices. Eigenvalues, eigenvectors. Characteristic polynomial. The existence of a basis consisting of eigenvectors.

Literature

Compulsory:

Recommended:

Paul R. Halmos: Finite dimensional vector spaces, Benediction Classics, Oxford, 2015.
Serge Lang, Linear Algebra, Springer Science \& Business Media, 2013.
Howard Anton and Chris Rorres, Elementary Linear Algebra, John Wiley \& Sons, 2010.

Schedule:

$I^{s t}$ week
Basic concepts of algebra. Permutations and their properties.
$2^{\text {nd }}$ week
Determinants. Expanding determinants. Laplace expansion theorem.
$3^{\text {rd }}$ week
Operations on matrices. Matrix algebra. Multiplication theorem of determinants. Inverse of matrices.
$4^{\text {th }}$ week

Vector space, subspace, generating system, linear dependence and independence. Basis, dimension.
$5^{\text {th }}$ week
Linear mappings of vector spaces. Fundamental theorems on linear mappings. Transformation of bases and coordinates.
$t^{\text {th }}$ week
Rank of a set of vectors, rank of a matrix. Theorem on ranks. Calculating the rank of a matrix by elimination.
$7^{\text {th }}$ week
Sum and direct sum of subspaces. Equivalent properties. Coset of subspaces. Factor spaces of vector spaces. Dimension of the factor space.
$8^{\text {th }}$ week
Systems of linear equations. Criteria for solubility, for the uniqueness of solutions. Homogeneous systems of linear equations. Solutions space, the dimension of the solution space.
$9^{\text {th }}$ week
Inhomogeneous systems of linear equations. The structure of solutions. Cramer's rule Gaussian elimination.
$10^{\text {th }}$ week
Linear mappings of vector spaces. Kernel, image. Theorem on homomorphisms. The condition of injectivity.
$11^{\text {th }}$ week
Linear transformations. Injective and surjective linear transformations. The matrix of a linear transformation. Calculation the image vector. The matrix of the linear transformation in a new basis.
$12^{\text {th }}$ week
Operations on linear transformations. Algebra of linear transformations. Similar matrices. Automorphisms.
$13^{\text {th }}$ week
Invariant subspaces. Eigenvector, eigenvalues of a linear transformation. Eigenspace. Eigenvectors of distinct eigenvalues. Eigenspaces of distinct eigenvalues.
$14^{\text {th }}$ week
Characteristic polynomial. Algebraic and geometric multiplicity of eigenvalues. Spectrum of a linear transformation. Existence of a basis consisting of eigenvectors.

Requirements:

- for a signature

If the student fail the course TTMBG0102, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.

Person responsible for course: Prof. Dr. István Gaál, university professor, DSc
Lecturer: Prof. Dr. István Gaál, university professor, DSc

Title of course: Linear algebra 1.

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Basic notions in algebra. Determinants. Operations with matrices. Vector spaces, basis, dimension. Linear mappings. Transformation of basis and coordinates. The dimensions of the row space and the column space of matrices are equal. Sum and direct sum of subspaces. Factor spaces. Systems of linear equations. Matrix of a linear transformation. Operations with linear transformations. Similar matrices. Eigenvalues, eigenvectors. Characteristic polynomial. The existence of a basis consisting of eigenvectors.

Literature

Compulsory:
-

Recommended:

Paul R. Halmos: Finite dimensional vector spaces, Benediction Classics, Oxford, 2015.
Serge Lang, Linear Algebra, Springer Science \& Business Media, 2013.
Howard Anton and Chris Rorres, Elementary Linear Algebra, John Wiley \& Sons, 2010.

Schedule:

$1^{s t}$ week
Abstract groups, permutation.
$2^{\text {nd }}$ week
Determinants. Expanding determinants.
$3^{\text {rd }}$ week
Operations on matrices.
$4^{\text {th }}$ week
Inverse of matrices. Vectors spaces. Basis, dimension.
$5^{\text {th }}$ week
Transformation of bases and coordinates.
$\sigma^{\text {th }}$ week

Rank of a matrix. Calculating the rank of a matrix by elimination.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Homogeneous systems of linear equations. Solutions space.
$9^{\text {th }}$ week
Inhomogeneous systems of linear equations. Cramer's rule Gaussian elimination.
$10^{\text {th }}$ week
Linear mappings of vector spaces. Calculating the kernel and image.
$11^{\text {th }}$ week
The matrix of a linear transformation. The matrix of the linear transformation in a new basis.
$12^{\text {th }}$ week
Operations on linear transformations. Similar matrices.
$13^{\text {th }}$ week
Able to calculate eigenvalues, eigenvectors, basis consisting of eigenvectors.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. István Gaál, university professor, DSc
Lecturer: Prof. Dr. István Gaál, university professor, DSc

Title of course: Linear algebra 2.

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0102
Further courses built on it: -

Topics of course

Linear forms, bilinear forms, quadratic forms. Inner product, Euclidean space. Inequalities in Euclidean spaces. Orthonormal bases. Gram-Schmidt orthogonalization method. Orthogonal complement of a subspace. Complex vectorspaces with inner product: unitary spaces. Linear forms, bilinear forms and inner products. Adjoint of a linear transformation. Properties of the adjoint transformation. Self-adjoint transformations. Isometric/orthogonal transformations. Normal transformations.

Literature

Compulsory:

-

Recommended:

Paul R. Halmos: Finite dimensional vector spaces, Benediction Classics, Oxford, 2015.
Serge Lang, Linear Algebra, Springer Science \& Business Media, 2013.
Howard Anton and Chris Rorres, Elementary Linear Algebra, John Wiley \& Sons, 2010.

Schedule:

$I^{\text {st }}$ week
Nilpotent transformations. Canonical form of a nilpotent matrix.
$2^{\text {nd }}$ week
Jordan normal form, Jordan blocks, canonical basis.
$3^{\text {rd }}$ week
Linear forms, bilinear forms, quadratic forms.
$4^{\text {th }}$ week
Canonical form of bilinear and quadratic forms. Lagrange theorem. Sylvester theorem. Jacobi theorem. Positive definite quadratic forms and their characterization.
$5^{\text {th }}$ week
Inner product, Euclidean space, Cauchy-Bunyakovszkij-Schwarz inequality, Minkowski ine-
quality.
$6^{\text {th }}$ week
Gram-Schmidt orthogonalization method, orthonormed bases, orthogonal complement of a subspace, Bessel inequality, Parseval equation.
$7^{\text {h }}$ week
Bilinear and quadratic forms in complex vector spaces. Inner product. Unitary spaces.
$8^{\text {th }}$ week
Linear, bilinear forms and inner products. Adjoint transformations. Properties of the adjoint transformation.
$9^{\text {th }}$ week
Self-adjoint transformations, eigenvalues, eigenvectors, canonical form.
$10^{\text {th }}$ week
Orthogonal transformations. Equivalent properties. Properties of orthogonal matrices.
$11^{\text {th }}$ week
Orthogonal transformations of Euclidean spaces. Quasi diagonal matrices. Representation of linear transformations by self-adjoint transformations.
$12^{\text {th }}$ week
Normal transformations in unitary spaces. Polar representation theorem.
$13^{\text {th }}$ week
Curves of second order, Asymptote directions. Diameters conjugated to a direction. Principal axis. Transformation to principal axis.
$14^{\text {th }}$ week
Application of symbolic algebra packages in linear algebra calculations.

Requirements:

- for a signature

If the student fail the course TTMBG0103, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. István Gaál, university professor, DSc
Lecturer: Prof. Dr. István Gaál, university professor, DSc

Title of course: Linear algebra 2.
Code: TTMBG0103
Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0102
Further courses built on it: -

Topics of course

Linear forms, bilinear forms, quadratic forms. Inner product, Euclidean space. Inequalities in Euclidean spaces. Orthonormal bases. Gram-Schmidt orthogonalization method. Orthogonal complement of a subspace. Complex vectorspaces with inner product: unitary spaces. Linear forms, bilinear forms and inner products. Adjoint of a linear transformation. Properties of the adjoint transformation. Self-adjoint transformations. Isometric/orthogonal transformations. Normal transformations.

Literature

Compulsory:

-

Recommended:

Paul R. Halmos: Finite dimensional vector spaces, Benediction Classics, Oxford, 2015.
Serge Lang, Linear Algebra, Springer Science \& Business Media, 2013.
Howard Anton and Chris Rorres, Elementary Linear Algebra, John Wiley \& Sons, 2010.

Schedule:

$I^{s t}$ week
Nilpotent transformations.
$2^{\text {nd }}$ week
Jordan normal form.
$3^{\text {rd }}$ week
Linear forms, bilinear forms, quadratic forms.
$4^{\text {th }}$ week
Canonical form of bilinear and quadratic forms. Positive definite quadratic forms and their characterization.
$5^{\text {th }}$ week
Inner product, Euclidean space.
$6^{\text {th }}$ week
Gram-Schmidt orthogonalization method, orthonormed bases.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Adjoint transformations. Properties of the adjoint transformation.
$9^{\text {th }}$ week
Self-adjoint transformations, eigenvalues, eigenvectors, canonical form.
$10^{\text {th }}$ week
Orthogonal transformations.
$11^{\text {th }}$ week
Orthogonal transformations of Euclidean spaces. Quasi diagonal matrices.
$12^{\text {th }}$ week
Normal transformations in unitary spaces. Polar representation theorem.
$13^{\text {th }}$ week
Curves of second order. Transformation to principal axis.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. István Gaál, university professor, DSc
Lecturer: Prof. Dr. István Gaál, university professor, DSc

Title of course: Introduction to algebra and number theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: TTMBE0104, TTMBG0701

Topics of course

Relations, algebraic structures, operations and their properties. Divisibility and division with remainder in Z. Greatest common divisor, Euclidean algorithm. Congruence relation and congruence classes in Z , rings of congruence classes. The theorem of Euler-Fermat. Linear congruences. Linear congruence systems, Chinese remainder theorem. Two-variable and multivariate linear Diophantine equations. Peano axioms, N, Z, Q. Complex numbers, operations, conjugate, absolute value. Trigonometric form of complex numbers, theorem of Moivre, nth roots of complex numbers, roots of unity. Polynomial ring over field. Euclidean division, greatest common divisor. Polynomial rings over Z, Q, R, and C, absolute value. Fundamental theorem of algebra. Partial fraction expression. Algebraic equations, discriminant, resultant, multiple roots, cubic and quartic equations. Multivariate polynomials, symmetric and elementary symmetric functions, fundamental theorem of symmetric polynomials.

Literature

Compulsory:

Recommended:

I. Nivan, H. S. Zuckerman, H. L. Montgomery: An introduction to the theory of numbers. John Wiley and Sons, 1991.
L. N., Childs:: A concrete introduction to higher algebra. New York, Springer, 2000.

Schedule:

$I^{s t}$ week
Relations, algebraic structures, operations and their properties.
$2^{\text {nd }}$ week
Peano axioms, natural numbers.
$3^{\text {rd }}$ week
Integer and rational numbers.
$4^{\text {th }}$ week

Complex numbers, operations, conjugate, absolute value.
$5^{\text {th }}$ week
Trigonometric form of complex numbers, theorem of Moivre, nth roots of complex numbers, roots of unity.
$6^{\text {th }}$ week
Divisibility and division with remainder in Z. Greatest common divisor, Euclidean algorithm.
$7^{\text {th }}$ week
Congruence relation and congruence classes in Z, rings of congruence classes. Euler's phifunction, the theorem of Euler-Fermat.
$8^{\text {th }}$ week
Linear congruences. Condition of solvability, number of solutions. Linear congruence systems, Chinese remainder theorem.
$9^{\text {th }}$ week
Two-variable linear Diophantine equations, condition of solvability and their connection with linear congruences, multivariate linear Diophantine equations.
$10^{\text {th }}$ week
Polynomial ring over field. Euclidean division, greatest common divisor.
$11^{\text {th }}$ week
Ring of $\mathrm{Z}[\mathrm{x}], \mathrm{Q}[\mathrm{x}], \mathrm{R}[\mathrm{x}], \mathrm{C}[\mathrm{x}]$, irreducible factorization.
$12^{\text {th }}$ week
Fundamental theorem of algebra. Partial fraction expression.
$13^{\text {th }}$ week
Algebraic equations, discriminant, resultant, multiple roots, cubic and quartic equations.
$14^{\text {th }}$ week
Multivariate polynomials, symmetric and elementary symmetric functions, fundamental theorem of symmetric polynomial.

Requirements:

- for a signature

If the student fail the course TTMBG0101, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	$\operatorname{good}(4)$
$86-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Ákos Pintér, university professor, DSc
Lecturer: Prof. Dr. Ákos Pintér, university professor, DSc

Title of course: Introduction to algebra and number theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
- laboratory: -
```

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -

Further courses built on it: -

Topics of course

Relations, algebraic structures, operations and their properties. Divisibility and division with remainder in Z. Greatest common divisor, Euclidean algorithm. Congruence relation and congruence classes in Z, rings of congruence classes. The theorem of Euler-Fermat. Linear congruences. Linear congruence systems, Chinese remainder theorem. Two-variable and multivariate linear Diophantine equations. Peano axioms, N, Z, Q. Complex numbers, operations, conjugate, absolute value. Trigonometric form of complex numbers, theorem of Moivre, nth roots of complex numbers, roots of unity. Polynomial ring over field. Euclidean division, greatest common divisor. Polynomial rings over Z, Q, R, and C, absolute value. Fundamental theorem of algebra. Partial fraction expression. Algebraic equations, discriminant, resultant, multiple roots, cubic and quartic equations. Multivariate polynomials, symmetric and elementary symmetric functions, fundamental theorem of symmetric polynomials.

Literature

Compulsory:

Recommended:

I. Nivan, H. S. Zuckerman, H. L. Montgomery: An introduction to the theory of numbers. John Wiley and Sons, 1991.
L. N., Childs:: A concrete introduction to higher algebra. New York, Springer, 2000.

Schedule:

$1^{s t}$ week
Relations, algebraic structures, operations and their properties.
$2^{\text {nd }}$ week
Peano axioms, natural numbers.
$3^{\text {rd }}$ week
Integer and rational numbers.
$4^{\text {th }}$ week

Complex numbers, operations, conjugate, absolute value.
$5^{\text {th }}$ week
Trigonometric form of complex numbers, theorem of Moivre, $\mathrm{n}^{\wedge} \mathrm{th}$ roots of complex numbers, roots of unity.
$6^{\text {th }}$ week
Divisibility and division with remainder in Z. Greatest common divisor, Euclidean algorithm.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Euler's phi-function, the theorem of Euler-Fermat. Linear congruences. Condition of solvability, number of solutions. Linear congruence systems, Chinese remainder theorem.
$9^{\text {th }}$ week
Two-variable linear Diophantine equations, condition of solvability and their connection with linear congruences, multivariate linear Diophantine equations.
$10^{\text {th }}$ week
Polynomial ring over field. Euclidean division, greatest common divisor.
$11^{\text {th }}$ week
Ring of $\mathrm{Z}[\mathrm{x}], \mathrm{Q}[\mathrm{x}], \mathrm{R}[\mathrm{x}], \mathrm{C}[\mathrm{x}]$, irreducible factorization.
$12^{\text {th }}$ week
Fundamental theorem of algebra. Partial fraction expression. Algebraic equations, discriminant, resultant, multiple roots, cubic and quartic equations.
$13^{\text {th }}$ week
Multivariate polynomials, symmetric and elementary symmetric functions, fundamental theorem of symmetric polynomial.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Ákos Pintér, university professor, DSc

Lecturer: Prof. Dr. Ákos Pintér, university professor, DSc

Title of course: Algebra 1.

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{1 \text { st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0101
Further courses built on it: TTMBE0105

Topics of course

Definition of groups, examples. Permutations, sign of permutations. Homomorphisms. Order, cyclic groups. Subgroups, generated subgroups, Lagrange's theorem. Direct product, the fundamental theorem of finite Abelian groups. Permutation groups and group actions, Cayley's theorem. Homomorphisms and normal subgroups, conjugation. Factor groups. Homomorphism theorem. Isomorphism theorems. Basic properties of p-groups, center. Definition of rings, examples. Subrings, generated subrings. Finite rings without zero divisors. Homomorphisms and ideals, factor rings. Rings of polynomials. Euclidean rings and principal ideal domains, the fundamental theorem of number theory. Fields, simple algebraic extensions. Minimal polynomial. The multiplicativity formula for degrees. Algebraic numbers. Construction of the splitting field. Characteristics, prime fields. Construction of finite fields, primitive roots, subfields of finite fields. Existence of irreducible polynomials over Zp with arbitrary degree. Geometric constructions with compass and straightedge: The impossibility of doubling a cube (a. k. a. the Delian problem), trisecting an edge and squaring a circle.

Literature

Compulsory:

Recommended:

John B. Fraleigh: A first course in abstract algebra, Addison-Wesley Publishing Company, 1989. Derek J. S. Robinson: A course in the theory of groups, Sringer-Verlag, 1980.

Schedule:

$I^{s t}$ week
Groups: definition, basic properties, examples. Permutations, sign. Homomorphisms.
$2^{\text {nd }}$ week
Order, cyclic groups, fundamental properties.
$3^{\text {rd }}$ week
Subgroups, generated subgroups, Lagrange's theorem.
$4^{\text {th }}$ week
Direct product, fundamental theorem of finite Abelian groups (without proof). Permutation groups and group actions, Cayley's theorem.
$5^{\text {th }}$ week
Homomorphisms and normal subgroups, conjugation. Factor group. Homomorphism theorem.
$6^{\text {th }}$ week
Isomorphism theorems (without proof). Fundamental properties of p-groups, non-triviality of the center.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Rings: definition, basic properties, examples. Subrings, generated subrings,. Finite rings with no zero divisors are division rings.
$9^{\text {th }}$ week
Homomorphisms and ideals, factor rings and their subrings. Polynomial rings.
$10^{\text {th }}$ week
Euclidean domains and PIDs, basic number theoretical properties. Fundamental theorem of number theory in Euclidean domains.
$11^{\text {th }}$ week
Fields, simple field extensions by an algebraic element. Minimal polynomial and degree of simple extensions. Field extensions by more than one elements.
$12^{\text {th }}$ week
The multiplicativity formula for degrees. Algebraic numbers, the field of algebraic numbers is algebraically closed. Construction of the quotient field (without the proof of uniqueness).
$13^{\text {th }}$ week
Characteristic of a field, prime field. Construction of finite fields, primitive roots, subfields of finite fields. Existence of irreducible polynomials of arbitrary degree over the p-element field. Geometric constructions: the Delean problem, trisection of an angle and squaring a circle are unsolvable with a compass and a straightedge.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

If the student fail the course TTMBG0104, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-39$	fail (1)
$40-49$	pass (2)
$50-59$	satisfactory (3)
$60-69$	$\operatorname{good}(4)$
$70-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. László Remete, assistant lecturer, PhD

Lecturer: Dr. László Remete, assistant lecturer, PhD

Title of course: Algebra 1.
ECTS Credit points: 2
Code: TTMBG0104
Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{1 \text { st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0101
Further courses built on it: TTMBE0105, TTMBG0105

Topics of course

Definition of groups, examples. Permutations, sign of permutations. Homomorphisms. Order, cyclic groups. Subgroups, generated subgroups, Lagrange's theorem. Direct product, the fundamental theorem of finite Abelian groups. Permutation groups and group actions, Cayley's theorem. Homomorphisms and normal subgroups, conjugation. Factor groups. Homomorphism theorem. Isomorphism theorems. Basic properties of p-groups, center. Definition of rings, examples. Subrings, generated subrings. Finite rings without zero divisors. Homomorphisms and ideals, factor rings. Rings of polynomials. Euclidean rings and principal ideal domains, the fundamental theorem of number theory. Fields, simple algebraic extensions. Minimal polynomial. The multiplicativity formula for degrees. Algebraic numbers. Construction of the splitting field. Characteristics, prime fields. Construction of finite fields, primitive roots, subfields of finite fields. Existence of irreducible polynomials over Zp with arbitrary degree. Geometric constructions with compass and straightedge: The impossibility of doubling a cube (a. k. a. the Delian problem), trisecting an edge and squaring a circle.

Literature

Compulsory:

Recommended:

John B. Fraleigh: A first course in abstract algebra, Addison-Wesley Publishing Company, 1989. Derek J. S. Robinson: A course in the theory of groups, Sringer-Verlag, 1980.

Schedule:

$I^{s t}$ week
Groups: definition, basic properties, examples. Permutations, sign. Homomorphisms.
$2^{\text {nd }}$ week
Order, cyclic groups, fundamental properties.
$3^{\text {rd }}$ week
Subgroups, generated subgroups, Lagrange's theorem.
$4^{\text {th }}$ week
Direct product, fundamental theorem of finite Abelian groups (without proof). Permutation groups and group actions, Cayley's theorem.
$5^{\text {th }}$ week
Homomorphisms and normal subgroups, conjugation. Factor group. Homomorphism theorem.
$6^{\text {th }}$ week
Isomorphism theorems (without proof). Fundamental properties of p-groups, non-triviality of the center.
$7^{\text {th }}$ week
Students can ask questions and get an overview on the subject material in all topics prior to the first test.
$8^{\text {th }}$ week
Rings: definition, basic properties, examples. Subrings, generated subrings,. Finite rings with no zero divisors are division rings.
$9^{\text {th }}$ week
Homomorphisms and ideals, factor rings and their subrings. Polynomial rings.
$10^{\text {th }}$ week
Euclidean domains and PIDs, basic number theoretical properties. Fundamental theorem of number theory in Euclidean domains.
$11^{\text {th }}$ week
Fields, simple field extensions by an algebraic element. Minimal polynomial and degree of simple extensions. Field extensions by more than one elements.
$12^{\text {th }}$ week
The multiplicativity formula for degrees. Algebraic numbers, the field of algebraic numbers is algebraically closed. Construction of the quotient field (without the proof of uniqueness).
$13^{\text {th }}$ week
Characteristic of a field, prime field. Construction of finite fields, primitive roots, subfields of finite fields. Existence of irreducible polynomials of arbitrary degree over the p-element field. Geometric constructions: the Delean problem, trisection of an angle and squaring a circle are unsolvable with a compass and a straightedge.
$14^{\text {th }}$ week
Students can ask questions and get an overview on the subject material in all topics prior to the second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The preliminary requirement to pass the course is to obtain at least 51 percent of total points from short tests written on a once a week basis with the exception of the $1^{\text {st }}, 7^{\text {th }}$ and $14^{\text {th }}$ week.
The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-39$	fail (1)
$40-49$	pass (2)

$50-59$	satisfactory (3)
$60-69$	good (4)
$70-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. László Remete, assistant lecturer, PhD
Lecturer: Dr. László Remete, assistant lecturer, PhD

Title of course: Algebra 2.

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0104

Further courses built on it:

Topics of course

Sylow's theorems. Semidirect product. Maximal subgroups of p-groups are normal of index p. Characteristic subgroup, commutator. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points. Free groups, generators, relations, Dyck's theorem. Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions. Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem. Algebras, minimal polynomial over algebras. Frobenius' theorem. Splitting field, existence, uniqueness, algebraic closure, existence. Normal extensions, extensions of perfect fields are simple. Galois theory. Funadamental theorem of algebra. Compass and straightedge constructions. Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.

Literature

Compulsory:

Recommended:

John B. Fraleigh: A first course in abstract algebra, Addison-Wesley Publishing Company, 1989. Derek J. S. Robinson: A course in the theory of groups, Sringer-Verlag, 1980.

Schedule:

$I^{s t}$ week
Sylow's theorems. Semidirect products.
$2^{\text {nd }}$ week
Maximal subgroups of p-groups are normal of index p. Characteristic subgroup, commutator.
Fundamental theorem of finite Abelian groups.
$3^{\text {rd }}$ week
Isomorphism theorems. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points.
$4^{\text {th }}$ week

Free groups, generators, relations, Dyck's theorem.
$5^{\text {th }}$ week
Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions.
$\sigma^{\text {th }}$ week
Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Algebras, minimal polynomial over algebras, Frobenius' theorem.
$9^{\text {th }}$ week
Splitting field, existence, uniqueness, algebraic closure existence, uniqueness.
$10^{\text {th }}$ week
Normal extensions, finite extensions of perfect fields are simple.
$11^{\text {th }}$ week
Fundamental theorem of Galois theory.
$12^{\text {th }}$ week
Fundamental theorem of algebra. Compass and straightedge constructions.
$13^{\text {th }}$ week
Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

If the student fail the course TTMBG0105, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-39$	fail (1)
$40-49$	pass (2)
$50-59$	satisfactory (3)
$60-69$	good (4)
$70-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. László Remete, assistant lecturer, PhD
Lecturer: Dr. László Remete, assistant lecturer, PhD

Title of course: Algebra 2.
ECTS Credit points: 2
Code: TTMBG0105
Type of teaching, contact hours

- lecture: -
- practice: 2 hours/week
- laboratory:

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory: -
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0104
Further courses built on it: -

Topics of course

Sylow's theorems. Semidirect product. Maximal subgroups of p -groups are normal of index p . Characteristic subgroup, commutator. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points. Free groups, generators, relations, Dyck's theorem. Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions. Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem. Algebras, minimal polynomial over algebras. Frobenius' theorem. Splitting field, existence, uniquencess, algebraic closure, existence. Normal extensions, extensions of perfect fields are simple. Galois theory. Funadamental theorem of algebra. Compass and straightedge constructions. Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.

Literature

Compulsory:

Recommended:

John B. Fraleigh: A first course in abstract algebra, Addison-Wesley Publishing Company, 1989. Derek J. S. Robinson: A course in the theory of groups, Sringer-Verlag, 1980.

Schedule:

$I^{s t}$ week
Sylow's theorems. Semidirect products.
$2^{\text {nd }}$ week
Maximal subgroups of p -groups are normal of index p . Characteristic subgroup, commutator. Fundamental theorem of finite Abelian groups.
$3^{\text {rd }}$ week
Isomorphism theorems. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points.
$4^{\text {th }}$ week
Free groups, generators, relations, Dyck's theorem.
$5^{\text {th }}$ week
Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions.
$6^{\text {th }}$ week
Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem.
$7^{\text {th }}$ week
Students can ask questions and get an overview on the subject material in all topics prior to the first test.
$8^{\text {th }}$ week
Algebras, minimal polynomial over algebras, Frobenius' theorem.
$9^{\text {th }}$ week
Splitting field, existence, uniqueness, algebraic closure existence, uniqueness.
$10^{\text {th }}$ week
Normal extensions, finite extensions of perfect fields are simple.
$11^{\text {th }}$ week
Fundamental theorem of Galois theory.
$12^{\text {th }}$ week
Fundamental theorem of algebra. Compass and straightedge constructions.
$13^{\text {th }}$ week
Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.
$14^{\text {th }}$ week
Students can ask questions and get an overview on the subject material in all topics prior to the second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The preliminary requirement to pass the course is to obtain at least 51 percent of total points from short tests written on a once a week basis with the exception of the $1^{\text {st }}, 7^{\text {th }}$ and $14^{\text {th }}$ week.
The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-39$	fail (1)
$40-49$	pass (2)
$50-59$	satisfactory (3)
$60-69$	good (4)
$70-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. László Remete, assistant lecturer, PhD

Lecturer: Dr. László Remete, assistant lecturer, PhD

Title of course: Number theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBG001, TTMBE0101
Further courses built on it: TTMBE0109, TTMBG0110

Topics of course

Orders of elements, generators and their description in Zp. Quadratic residues modulo p. Residues of higher degree. Arithmetic functions. Additive and multiplicative functions, some important arithmetic functions. Summatory function and Mobius-transform of arithmetic functions. The infinitude of the set of primes. Famous problems concerning primes. Primes in arithmetic progressions, the theorem of Dirichlet. The sume of the reciprocals of primes. The $\Pi(x)$ function, the prime number theorem. Lattices, the theorems of Blichfeldt and Minkowski and their applications. The Waring problem. Pythagorean triples. Algebraic numbers, algebraic integers. The field of algebraic numbers and the ring of algebraic integers. Algebraic number fields. Degree, basis, integers and units of a number fields. Quadratic number fields and their representations in the form $\mathrm{Q}(\sqrt{\mathrm{d}})$.

Literature

Compulsory:

Recommended:

I. Niven, H. S. Zuckerman, H. L. Montgomery: An Introduction to the Theory of Numbers, Wiley, 1991.
K. Ireland, M. Rosen, A classical introduction to modern number theory (Second edition), Springer-Verlag.
Tom Apostol, Introduction to Analytic Number Theory, Springer-Verlag.

Schedule:

$I^{\text {st }}$ week
Order of an element, generators and their description in Z_{p}.
$2^{\text {nd }}$ week
Quadratic residues modulo p. Legendre- and Jacobi-symbol and their properties. Quadratic reciprocity. Congruences of higher order.
$3^{\text {rd }}$ week

Number theoretical functions. Basic properties of additive and multiplicative functions.
$4^{\text {th }}$ week
Some important number theoretical functions, main properties and explicit formulas.
$5^{\text {th }}$ week
Summation and Mobius-transform of number theoretical functions. Mobius inversion theorem and its application to multiplicative functions.
$6^{\text {th }}$ week
The infinitude of the set of primes. Famous problems concerning primes: twin primes, Mersenneprimes, Fermat-primes, Goldbach's problems.
$7^{\text {th }}$ week
Primes in arithmetic progressions, Dirichlet's theorem, special cases, the Green-Tao theorem. The divergence of the sum of the reciprocals of primes.
$8^{\text {th }}$ week
The behavior of the $\Pi(x)$ function, estimates for $\Pi(x)$, the theorem of Chebishev. The density of the sequence of primes. The prime number theorem. Consequences, the asymptotic behavior of the n -th prime. The existence of arbitrarily long intervals containing no primes.
$9^{\text {th }}$ week
Lattices in R^{n}. Bases of a lattice, unimodular transformations and unimodular matrices. The fundamental parallelepiped and the lattice determinant. Lattices as discrete subgroups of R^{n}.
$10^{\text {th }}$ week
The theorems od Blichfeldt and Minkowski, and their applications for systems of linear Diophantine inequalities.
$11^{\text {th }}$ week
The Waring problem. Representing positive integers as sums of squares and higher powers. Pithagorean triples and reduced Pithagorean triples, Fermat's equation.
$12^{\text {th }}$ week
Algebraic numbers, algebraic integers. Degree, algebraic conjugates. The defining monic polinomial of an algebraic number and its properties. The field of the algebraic numbers, the ring of the algebraic integers. Transcendental numbers.
$13^{\text {th }}$ week
Algebraic number fields. Degree, basis, ring of integers, group of units.
$14^{\text {th }}$ week
Quadratic number fields and their representation in the form $Q(\sqrt{ } d)$. Norm and its properties in imaginary quadratic fields. Euklidean division in the rings of Gauss integers and Euler integers. Example for a ring having no unique factorization.

Requirements:

- for a signature

If the student fail the course TTMBG0106, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
	$51-60$
pass (2)	
	$61-70$
satisfactory (3)	
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:

It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Lajos Hajdu, university professor, DSc
Lecturer: Prof. Dr. Lajos Hajdu, university professor, DSc

Title of course: Number theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBG001, TTMBE0101
Further courses built on it: -

Topics of course

Orders of elements, generators and their description in Zp. Quadratic residues modulo p. Residues of higher degree. Arithmetic functions. Additive and multiplicative functions, some important arithmetic functions. Summatory function and Mobius-transform of arithmetic functions. The infinitude of the set of primes. Famous pronblems concerning primes. Primes in arithmetic progressions, the theorem of Dirichlet. The sume of the reciprocals of primes. The $\Pi(x)$ function, the prime number theorem. Lattices, the theorems of Blichfeldt and Minkowski and their applications. The Waring problem. Pithagorean triples. Algebraic numbers, algebraic integers. The field of algebraic numbers and the ring of algebraic integers. Algebraic number fields. Degree, basis, integers and units of a number fields. Quadratic number fields and their representations int he form $\mathrm{Q}(\sqrt{\mathrm{d}})$.

Literature

Compulsory:

Recommended:

I. Niven, H. S. Zuckerman, H. L. Montgomery: An Introduction to the Theory of Numbers, Wiley, 1991.
K. Ireland, M. Rosen, A classical introduction to modern number theory (Second edition), Springer-Verlag.
Tom Apostol, Introduction to Analytic Number Theory, Springer-Verlag.

Schedule:

$I^{s t}$ week
Order of an element, generators and their description in Z_{p}.
$2^{\text {nd }}$ week
Quadratic residues modulo p. Legendre- and Jacobi-symbol and their properties. Quadratic reciprocity. Congruences of higher order.
$3^{\text {rd }}$ week

Number theoretical functions. Basic properties of additive and multiplicative functions.
$4^{\text {th }}$ week
Some important number theoretical functions, main properties and explicit formulas.
$5^{\text {th }}$ week
Summation and Mobius-transform of number theoretical functions. Mobius inversion theorem and its application to multiplicative functions.
$6^{\text {th }}$ week
The infinitude of the set of primes. Famous problems concerning primes: twin primes, Mersenneprimes, Fermat-primes, Goldbach's problems. Primes in arithmetic progressions, Dirichlet's theorem, special cases, the Green-Tao theorem.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
The divergence of the sum of the reciprocals of primes. The behavior of the $\Pi(x)$ function, estimates for $\Pi(\mathrm{x})$, the theorem of Chebishev. The density of the sequence of primes. The prime number theorem. Consequences, the asymptotic behavior of the n-th prime. The existence of arbitrarily long intervals containing no primes.
$9^{\text {th }}$ week
Lattices in R^{n}. Bases of a lattice, unimodular transformations and unimodular matrices. The fundamental parallelepiped and the lattice determinant. Lattices as discrete subgroups of R^{n}.
$10^{\text {th }}$ week
Theorems of Minkowski and Blichfeldt and applications concerning system of linear inequalities. $11^{\text {th }}$ week
The Waring problem. Representing positive integers as sums of squares and higher powers. Pithagorean triples and reduced Pithagorean triples, Fermat's equation.
$12^{\text {th }}$ week
Algebraic numbers, algebraic integers. Degree, algebraic conjugates. The defining monic polinomial of an algebraic number and its properties. The field of the algebraic numbers, the ring of the algebraic integers. Transcendental numbers.
$13^{\text {th }}$ week
Algebraic number fields. Degree, basis, ring of integers, group of units. Quadratic number fields and their representation in the form $\mathrm{Q}(\sqrt{ } \mathrm{d})$. Norm and its properties in imaginary quadratic fields. Euklidean division in the rings of Gauss integers and Euler integers. Example for a ring having no unique factorization.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-60$	fail (1)
$61-70$	pass (2)

$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Lajos Hajdu, university professor, DSc
Lecturer: Prof. Dr. Lajos Hajdu, university professor, DSc

Title of course: Combinatorics and graph theory

Type of teaching, contact hours

- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 42 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 78 hours

Total: 120 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: TTMBE0606

Topics of course

Fundamental enumeration problems: permutations, variations, combinations. Properties of binomial coefficients, binomial and multinomial theorem. Inversions, parity, product of permutations, cycles. Inclusion-exclusion principle and applications. Basic definitions of graph theory. Eulerian trail, Hamiltonian path and cycle. Trees and forests, spanning trees, Prüfer code and Cayley's formula. Bipartite graphs. Plane graphs, dual graph, Euler's formula, planar graphs and their characterization. Vertex and edge colourings of graphs, chromatic number, the five color theorem, chromatic polynomial, chromatic index. Fundamentals of Ramsey theory. Matrices of graphs.

Literature

Compulsory:

Recommended:

Béla Andrásfai: Introductory Graph Theory, Akadémiai Kiadó, 1977.
N. Ya. Vilenkin: Combinatorics, Academic Press, 1971.

Miklós Bóna: A Walk Through Combinatorics, World Scientific, 2017.

Schedule:

$I^{s t}$ week
Pigeonhole principle and applications. Factorials, Stirling's formula, binomial coefficients.
$2^{\text {nd }}$ week
Permutations, variations, combinations with and without repetitions. Properties and sums of binomial coefficients.
$3^{\text {rd }}$ week
Binomial and multinomial theorem. Inversions, parity, product of permutations, cycles.
$4^{\text {th }}$ week
Inclusion-exclusion principle and applications. Basic definitions and theorems of graph theory.
$5^{\text {th }}$ week
Graphs with given degree sequences. Walk, trail, path, cycle, connected graph, distance.
$6^{\text {th }}$ week
Eulerian trail, Hamiltonian path, Hamiltonian cycle, and theorems on their existence.
$7^{\text {th }}$ week
Trees and forests, equivalent definitions of trees. Spanning trees, spanning forests, Prüfer code, Cayley's formula.
$8^{\text {th }}$ week
Bipartite graphs and characterization theorem. Plane graphs, dual graph, Euler's formula.
$9^{\text {th }}$ week
Planar graphs, Kuratowski's theorem.
$10^{\text {th }}$ week
Vertex colourings of graphs, chromatic number and bounds. Chromatic number of planar graphs, the five and four colour theorem.
$11^{\text {th }}$ week
Chromatic polynomial and properties, chromatic polynomial of trees. Edge colourings of graphs, chromatic index and bounds.
$12^{\text {th }}$ week
Ramsey numbers: the two-colour and the multicolour case, bounds, special values.
$13^{\text {th }}$ week
Adjacency and incidence matrices of graphs, characterization of fundamental graph properties using these matrices.
$14^{\text {th }}$ week
Fundamentals of the theory of directed graphs, directed acyclic graphs.

Requirements:

- for a signature

If the student fail the course TTMBG0107, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Gábor Nyul, assistant professor, PhD
Lecturer: Dr. Gábor Nyul, assistant professor, PhD

Title of course: Combinatorics and graph theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -

Further courses built on it: -

Topics of course

Fundamental enumeration problems: permutations, variations, combinations. Properties of binomial coefficients, binomial and multinomial theorem. Inversions, parity, product of permutations, cycles. Inclusion-exclusion principle and applications. Basic definitions of graph theory. Eulerian trail, Hamiltonian path and cycle. Trees and forests, spanning trees, Prüfer code and Cayley's formula. Bipartite graphs. Plane graphs, dual graph, Euler's formula, planar graphs and their characterization. Vertex and edge colourings of graphs, chromatic number, the five color theorem, chromatic polynomial, chromatic index. Fundamentals of Ramsey theory. Matrices of graphs.

Literature

Compulsory:

Recommended:

Béla Andrásfai: Introductory Graph Theory, Akadémiai Kiadó, 1977.
N. Ya. Vilenkin: Combinatorics, Academic Press, 1971.

Miklós Bóna: A Walk Through Combinatorics, World Scientific, 2017.

Schedule:

$I^{s t}$ week
Pigeonhole principle.
$2^{\text {nd }}$ week
Elementary combinatorial exercises.
$3^{\text {rd }}$ week
Elementary combinatorial exercises.
$4^{\text {th }}$ week
Combinatorial exercises under certain restrictions.
$5^{\text {th }}$ week

Parity, product of permutations, cycles.
$6^{\text {th }}$ week
Binomial and multinomial theorem.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Inclusion-exclusion principle.
$9^{\text {th }}$ week
Graphs with given degree sequences, Havel-Hakimi theorem.
$10^{\text {th }}$ week
Walk, trail, path, cycle, connectedness, distance.
$11^{\text {th }}$ week
Eulerian trail, Hamiltonian path, Hamiltonian cycle.
$12^{\text {th }}$ week
Trees and forests, Prüfer code.
$13^{\text {th }}$ week
Adjacency and incidence matrices of graphs. Chromatic polynomial of graphs.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Gábor Nyul, assistant professor, PhD
Lecturer: Dr. Gábor Nyul, assistant professor, PhD

Title of course: Foundations of analysis

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 32 hours
- preparation for the exam: -

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: TTMBE0214, TTMBG0214, TTMBE0213

Topics of course

Foundations of logic and set theory. Cartesian product, relations: equivalence and order relations, functions. Properties of operations and the order on the set of real numbers. The notion of greatest lower and least upper bound; the least-upper-bound property. Exponential identities. Fractions and decimals. Mathematical induction. Inequalities. Sets of numbers of countable and continuum cardinality.

Literature

Compulsory:

- Walter Rudin: Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.

Schedule:

$1^{\text {st }}$ week
Operations with sets, properties of the operations and De Morgan's laws.
$2^{\text {nd }}$ week
Ordered pairs, Cartesian product. Relations; domain, range and inverse of a relation. Composition of relations, properties of composition.
$3^{\text {rd }}$ week
Special types of relations: the notion of a function, injective, surjective and bijective functions. Connections between functions and set operations.
$4^{\text {th }}$ week
Special types of relations: equivalence relations and partitions. Ordering relations and partial orderings. Boundedness, minimum, maximum, greatest lower bound (infimum), least upper bound
(supremum).
$5^{\text {th }}$ week
Power, exponential and logarithmic functions. Exponential identities.
$6^{\text {th }}$ week
Further exercises and problems.
$7^{\text {th }}$ week
First mid-term test.
$8^{\text {th }}$ week
Proofs by mathematical induction.
$9^{\text {th }}$ week
Inequalities containing absolute values, second order polynomials and fractions of first order polynomials.
$10^{\text {th }}$ week
Notable inequalities: Bernoulli's inequality, inequalities between harmonic, geometric and arithmetic means, Schwarz and Minkowski inequalities.
$11^{\text {th }}$ week
Fractions and decimals. Conversion between ordinary fractions and decimals.
$12^{\text {th }}$ week
Countable sets. Sets with the cardinality of the continuum.
$13^{\text {th }}$ week
Further exercises and problems.
$14^{\text {th }}$ week
Second mid-term test.

Requirements:

Participation in practical classes is compulsory. A student must attend the practical classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students write two mid-term tests during the semester. At the end of the semester one of the two tests can be repeated. The result of the repeated test will replace the original one. The mark will be determined by the sum of the points of the two mid-term tests according to the following tabular:

Score (percent)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$60-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

In all other questions the Education and Examination Rules and Regulations of the University of Debrecen must be consulted.

Person responsible for course: Dr. Rezső L. Lovas, assistant professor, PhD
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD., habil.
Dr. Zoltán Boros, associate professor, PhD., habil.
Dr. Eszter Novák-Gselmann, associate professor, PhD., habil.
Dr. Zsolt Páles, university professor, PhD., habil., DSc.

Title of course: Introduction to analysis
ECTS Credit points: 5

Code: TTMBE0214

Type of teaching, contact hours

- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 42 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 78 hours

Total: 120 hours
Year, semester: 1st year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBG0212

Further courses built on it: TTMBE0215

Topics of course

Convergence of sequences of real numbers. Relations between convergence, boundedness and monotonicity. The Bolzano-Weierstrass theorem and Cauchy's criterion for convergence. Convergence and operations, the relation between the limit and the order. Elementary sequences; the Euler number. Accumulation points, lower and upper limit of sequences. Applications. Convergence of sequences of complex numbers. The Bolzano-Weierstrass-theorem and Cauchy's criterion for sequences of complex numbers. Relations between convergence and the operations. Series of complex numbers; absolute and conditional convergence. Summation of series and operations, grouping and rearranging series. Riemann's theorem. Complex geometric series; the comparison, root and ratio tests. Abel's formula; the theorems of Dirichlet, Leibniz and Abel. Cauchy product, Mertens theorem. Pointwise and uniform convergence of function sequences and series. Cauchy's criterion and the sufficient condition of Weiersrass for uniform convergence. Power series; the Cauchy-Hadamard theorem. Elementary functions and their addition formulas. Metric spaces, normed spaces, Banach spaces, Euclidean spaces. Basic notions in metric spaces. Equivalent metrics and equivalent norms. Hausdorff's criterion for compactness. Special norms of Euclidean spaces. The Bolzano-Weierstrass-theorem and the Heine-Borel theorem. Continuity and its characterization in terms of sequences in metrc spaces. Continuity and operations, the continuity of composite functions. Relations between compactness and continuity, respectively connectedness and continuity. Continuous bijections on compact sets. Uniform continuity and its characterization.

Literature

Compulsory:

1. W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1964.
2. E. Hewitt, K. R. Stromberg: Real and Abstract Analysis. Springer-Verlag, 1965.
3. K. R. Stromberg: An introduction to classical real analysis. Wadsworth, California, 1981. Recommended:

Schedule:

$I^{s t}$ week
Convergence of sequences of real numbers. Relations between convergence, boundedness and monotonicity. The Bolzano-Weierstrass theorem and Cauchy's criterion for convergence.
$2^{\text {nd }}$ week
Convergence and operations, the relation between the limit and the order. Elementary sequences; the Euler number.
$3^{\text {rd }}$ week
Accumulation points, lower and upper limit of sequences. Applications.
$4^{\text {th }}$ week
Convergence of sequences of complex numbers. The Bolzano-Weierstrass-theorem and Cauchy's criterion for sequences of complex numbers. Relations between convergence and the operations.
$5^{\text {th }}$ week
Complex geometric series; the comparison, root and ratio tests.
$6^{\text {th }}$ week
Abel's formula; the theorems of Dirichlet, Leibniz and Abel. Cauchy product, Mertens theorem. $7^{\text {th }}$ week
Pointwise and uniform convergence of function sequences and series. Cauchy's criterion and the sufficient condition of Weiersrass for uniform convergence. Power series; the Cauchy-Hadamard theorem.
$8^{\text {th }}$ week
Elementary functions and their addition formulas.
$9^{\text {th }}$ week
Metric spaces, normed spaces, Banach spaces, Euclidean spaces. Basic notions in metric spaces.
$10^{\text {th }}$ week
Boundedness and uniform boundedness in metric spaces. Topology in metric spaces. Equivalent metrics and equivalent norms.
$11^{\text {th }}$ week
Compactness in metric spaces. Hausdorff's criterion for compactness.
$12^{\text {th }}$ week
Special norms of Euclidean spaces. The Bolzano-Weierstrass-theorem and the Heine-Borel theorem.
$13^{\text {th }}$ week
Continuity and its characterization in terms of sequences in metrc spaces. Continuity and operations, the continuity of composite functions.
$14^{\text {th }}$ week
Relations between compactness and continuity, respectively connectedness and continuity. Continuous bijections on compact sets. Uniform continuity and its characterization.

Requirements:

The course ends in an oral or written examination. Two assay questions are chosen randomly from the list of assays. In case one of them is incomplete, the examination ends with a fail. In lack of the knowledge of proofs, at most satisfactory can be achieved. The grade for the examination is given according to the following table:

Score
Grade

$0-59 \%$	fail (1)
$60-69 \%$	pass (2)
$70-79 \%$	satisfactory (3)
$80-89 \%$	good (4)
$90-100 \%$	excellent (5)
In general, the EDUCATION AND EXAMINATION RULES AND REGULATIONS have to be	
taken into account.	
Person responsible for course: Dr. Mihály Bessenyei, associate professor, PhD	
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD	

Title of course: Introduction to analysis

Type of teaching, contact hours

- lecture: -
- practice: 3 hours/week
- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: -

Total: 74 hours
Year, semester: 1st year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBG0212

Further courses built on it: TTMBE0214

Topics of course

Convergence of sequences of real numbers. Convergence and operations, the relation between the limit and the order. Elementary sequences; the Euler number. Convergence of sequences of complex numbers. Series of complex numbers; absolute and conditional convergence. Summation of series and operations, grouping and rearranging series. Complex geometric series; the comparison, root and ratio tests. Pointwise and uniform convergence of function sequences and series. Cauchy's criterion and the sufficient condition of Weiersrass for uniform convergence. Power series; the Cauchy-Hadamard theorem. Elementary functions and their addition formulas. Metric spaces, normed spaces, Banach spaces, Euclidean spaces. Basic notions in metric spaces. Special norms of Euclidean spaces. Continuity and its characterization in terms of sequences in metric spaces.

Literature

Compulsory:

1. W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1964.
2. E. Hewitt, K. R. Stromberg: Real and Abstract Analysis. Springer-Verlag, 1965.
3. K. R. Stromberg: An introduction to classical real analysis. Wadsworth, California, 1981.

Recommended:

Schedule:

$1^{s t}$ week
Convergence of sequences of real numbers. Cauchy's criterion for convergence.
$2^{\text {nd }}$ week
Convergence and operations, the relation between the limit and the order. Elementary sequences; the Euler number (ratio of polynomials and exponential polynomials, difference of roots).
$3^{\text {rd }}$ week

Convergence and operations, the relation between the limit and the order. Elementary sequences; the Euler number (n -square and n -power of ratio of linear expressions).
$4^{\text {th }}$ week
Convergence of series via definition, via determining the closed form of partial sums.
$5^{\text {th }}$ week
Complex geometric series; the comparison, root and ratio tests.
$\sigma^{\text {th }}$ week
Summary.
$7^{\text {th }}$ week
Mid-term test.
$8^{\text {th }}$ week
Power series and elementary functions.
$9^{\text {th }}$ week
Pointwise and uniform convergence of sequence and series of functions.
$10^{\text {th }}$ week
Metric spaces, normed spaces, Banach spaces, Euclidean spaces. Special norms of Euclidean spaces.
$11^{\text {th }}$ week
Topology and compactness in metric spaces.
$12^{\text {th }}$ week
Continuity and its characterization in terms of sequences in Euclidean spaces.
$13^{\text {th }}$ week
Summary.
$14^{\text {th }}$ week
End-term test.

Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

The course finishes with a grade, which is based on the total sum of points of the mid-term test (in the $7^{\text {th }}$ week) and the end-term test (in the $14^{\text {th }}$ week). One of the tests can be repeated. The final grade is given according to the following table:

Score	Grade
$0-59 \%$	fail (1)
$60-69 \%$	pass (2)
$70-79 \%$	satisfactory (3)
$80-89 \%$	good (4)
$90-100 \%$	excellent (5)

In general, the EDUCATION AND EXAMINATION RULES AND REGULATIONS have to be taken into account.

Person responsible for course: Dr. Mihály Bessenyei, associate professor, PhD
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD

Title of course: Differential and integral calculus

Type of teaching, contact hours

- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 42 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 78 hours

Total: 120 hours
Year, semester: 2nd year, 1st semester
Its prerequisite(s): TTMBE0214, TTMBG0215
Further courses built on it: TTMBE0216

Topics of course

Limit of functions and its computation using limit of sequences. Cauchy's criterions; the relation between the limit and the operations, respectively the order. The relation between limit and uniform convergence, respectively continuity and uniform convergence; Dini's theorem. Right- and leftsided limits; points of discontinuity; classification of discontinuities of the first kind; limit properties of monotone functions. Elementary limits; the introduction of pi. Functions stemming from elementary functions. Differentiability and approximation with linear functions. Differentiability and continuity; differentiability and operations; the chain rule and the differentiability of the inverse function. Local extremum, Fermat principle. The mean value theorems of Rolle, Lagrange, Cauchy and Darboux. L'Hospital rules. Higher order differentiability; Taylor's theorem, monotonicity and differentiability, higher order conditions for extrema. Convex functions. The definition of antiderivatives; basic integrals, rules of integration. Riemann integral and criteria for integrability; properties of the integral and methods of integration. The main classes of integrable functions. Inequalities, mean value theorems for the Riemann integral. The NewtonLeibniz theorem and the properties of antiderivatives. The relation between Riemann-integrability and uniform convergence. Lebesgue's criterion. Improper Riemann integral and its criteria.

Literature

Compulsory:

1. W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1964.
2. K. R. Stromberg: An introduction to classical real analysis. Wadsworth, California, 1981.

Recommended:

Schedule:

$1^{s t}$ week
Limit of functions and its computation using limit of sequences. Cauchy's criterions; the relation
between the limit and the operations, respectively the order.
$2^{\text {nd }}$ week
The relation between limit and uniform convergence, respectively continuity and uniform convergence; Dini's theorem.
$3^{\text {rd }}$ week
Right- and left-sided limits; points of discontinuity; classification of discontinuities of the first kind;
limit properties of monotone functions.
$4^{\text {th }}$ week
Elementary limits; the introduction of pi. Functions stemming from elementary functions.
$5^{\text {th }}$ week
Differentiability and approximation with linear functions. Differentiability and continuity; differentiability and operations; the chain rule and the differentiability of the inverse function.
$6^{\text {th }}$ week
Local extremum, Fermat principle. The mean value theorems of Rolle, Lagrange, Cauchy and
Darboux. L'Hospital rules. Higher order differentiability; Taylor's theorem.
$7^{\text {th }}$ week
Monotonicity and differentiability, higher order conditions for extrema. Convex functions.
$8^{\text {th }}$ week
The definition of antiderivatives; basic integrals, rules of integration.
$9^{\text {th }}$ week
Darboux integrals and their properties.
$10^{\text {th }}$ week
Riemann integral and its properties.
$11^{\text {th }}$ week
The main classes of integrable functions. Inequalities, mean value theorems for the Riemann integral. The Newton-Leibniz theorem and the properties of antiderivatives.
$12^{\text {th }}$ week
The relation between Riemann-integrability and uniform convergence. Applications. Improper Riemann-integral.
$13^{\text {th }}$ week
Lebesgue null sets. Modulus of continuity.
$14^{\text {th }}$ week
Lebesgue's criterion and its applications.

Requirements:

The course ends in an oral or written examination. Two assay questions are chosen randomly from the list of assays. In case one of them is incomplete, the examination ends with a fail. In lack of the knowledge of proofs, at most satisfactory can be achieved. The grade for the examination is given according to the following table:

Score	Grade
$0-59 \%$	fail (1)
$60-69 \%$	pass (2)
$70-79 \%$	satisfactory (3)
$80-89 \%$	good (4)
$90-100 \%$	excellent (5)

In general, the EDUCATION AND EXAMINATION RULES AND REGULATIONS have to be taken into account.

Person responsible for course: Dr. Mihály Bessenyei, associate professor, PhD

Lecturer: Dr. Mihály Bessenyei, associate professor, PhD

Title of course: Differential and integral calculus
Code: TTMBG0215
Type of teaching, contact hours

- lecture:
- practice: 3 hours/week
- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 48 hours
- preparation for the exam: -

Total: 90 hours
Year, semester: 2nd year, 1st semester
Its prerequisite(s): TTMBE0214
Further courses built on it: TTMBE0215

Topics of course

Limit of functions and its computation using limit of sequences. Differentiability and operations; the chain rule and the differentiability of the inverse function. Local extremum, Fermat principle, mean value theorems. L'Hospital rules. Higher order differentiability; Taylor's theorem. Monotonicity, convexity, extrema. Basic integrals, rules of integration. Riemann integral and the Newton-Leibniz theorem. Inequalities for Riemann integral. Improper Riemann integral.

Literature

Compulsory:

1. W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1964.
2. K. R. Stromberg: An introduction to classical real analysis. Wadsworth, California, 1981. Recommended:
```
Schedule:
I st week
Computing limits and derivatives of functions and its computation using limit of sequences.
2nd}\mathrm{ week
Differentiability and operations; the chain rule and the differentiability of the inverse function.
3 rd week
Higher order differentiability; Taylor's theorem.
4 th week
The mean value theorems of Rolle, Lagrange, Cauchy and Darboux. L'Hospital rules.
5th}\mathrm{ week
Monotonicity, convexity, extrema of functions.
6}\mp@subsup{}{}{\mathrm{ th}}\mathrm{ week
Summary
7th}\mathrm{ week
Midterm test.
```

```
8th week
Basic integrals, rules of integration.
9th}\mathrm{ week
Integration of partial fractions.
10th}\mathrm{ week
Applications of the integration of partial fractions.
11 th week
Riemann sums and Riemann integral. The Newton-Leibniz theorem. Improper Riemann integrals.
12 th week
Inequalities for Riemann integral.
13}\mp@subsup{3}{}{\mathrm{ th}}\mathrm{ week
Summary.
14 th week
Endterm test.
```


Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

The course finishes with a grade, which is based on the total sum of points of the mid-term test (in the $7^{\text {th }}$ week) and the end-term test (in the $14^{\text {th }}$ week). One of the tests can be repeated. The final grade is given according to the following table:

Score	Grade
$0-59 \%$	fail (1)
$60-69 \%$	pass (2)
$70-79 \%$	satisfactory (3)
$80-89 \%$	good (4)
$90-100 \%$	excellent (5)

In general, the EDUCATION AND EXAMINATION RULES AND REGULATIONS have to be taken into account.

Person responsible for course: Dr. Mihály Bessenyei, associate professor, PhD
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD

Title of course: Sets, functions, real numbers

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBG0212
Further courses built on it: -

Topics of course

Foundations of set theory. Relations. Equivalence and order relations, functions. Basic notions in partially ordered sets and Tarski's fixed point theorem. Cardinality of sets, Cantor's theorem and the Schröder-Bernstein theorem. Axioms of the real numbers and their corollaries. Notable subsets of the reals: natural numbers, integers, rational and irrational numbers. Uniqueness of the set of real numbers. Existence and uniqueness of the nth root. The p-adic represantion of real numbers. Notable inequalities. The field of complex numbers. Cardinality of sets of numbers.

Literature

Compulsory:

- Walter Rudin: Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.

Schedule:

1st week
Basic notions of set theory. Axiom of empty set, axiom of extensionality, axiom of pair, axiom of union, axiom of power set. Axiom of separation, Russel's theorem. Operations with sets, properties of the operations and De Morgan's laws.

2nd week
Ordered pairs, Cartesian product. Relations; domain, range and inverse of a relation. Composition of relations, properties of composition.

3rd week
The notion of a function, injective, surjective and bijective functions. Connections between functions and set operations. Indexed families of sets, axiom of choice.

4th week

Equivalence relations and partitions. Ordering relations and partial orderings, chains and intervals. Boundedness, minimum, maximum, infimum, supremum.

5th week
Completeness. Equivalent formulations of the axiom of choice: Zermelo's well ordering theorem, Hausdorff's maximum principal, Kuratowski-Zorn lemma.

6th week
Cardinality of sets. Comparison of cardinalities. Tarski's fixed point theorem and the SchröderBernstein theorem. Properties of relations of cardinalities.

7th week
Cardinality of a power set. Finite and infinite sets. Further axioms: axiom of regularity and axiom of infinity.

8th week
The axioms of real numbers. Corollaries of the field axioms and order axioms. The absolute value function. Dedekind's theorem and Cantor's theorem.

9th week
Natural numbers, Peano's axioms. The Archimedean property. Principle of induction and recursive definition. Properties of the binary operations. The binomial theorem and Bernoulli's inequality.

10th week
Integers, integer part and fractional part. Rational and irrational numbers, denseness theorems. Uniqueness of the set of real numbers.

11th week
Definition and existence of nth roots. Powers with rational exponents. p-adic fractions.

12th week
Notable inequalities. Power means. Inequality between the arithmetic, geometric and harmonic means. Schwarz and Minkowski inequalities.

13th week
The set of complex numbers and its algebraic structure. Real part, imaginary part, conjugate and absolute value of a complex number. Schwarz inequality for complex numbers.

14th week
Finite and infinite sets. Countable sets and the cardinality of the continuum. Cardinality of the set of natural numbers, integers, rational, real and complex numbers.

Requirements:

The course ends in an oral exam. In the exam students give an account on two exam questions. Students who reveal a profound lack of knowledge will fail the exam. Students who cannot prove the theorems in their exam questions can get at most a satisfactory (3) grade. Concerning all other questions, the Education and Examination Rules and Regulations of the University of Debrecen
must be consulted.
Person responsible for course: Dr. Rezső L. Lovas, assistant professor, PhD
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD., habil.
Dr. Zoltán Boros, associate professor, PhD., habil.
Dr. Eszter Novák-Gselmann, associate professor, PhD., habil.

Title of course: Differential and integral calculus in several variables Code: TTMBE0216

Type of teaching, contact hours

- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 42 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 78 hours

Total: 120 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0215
Further courses built on it:

Topics of course

The Banach contraction principle. Linear maps in normed spaces. The Fréchet derivative; chain rule, differentiability and operations. The mean value inequality of Lagrange. Inverse and implicit function theorems. Further notions of derivatives; the representation of the Fréchet derivative. Continuous differentiability and continuous partial differentiability; sufficient condition for differentiability. Higher order derivatives; Schwarz-Young theorem, Taylor's theorem. Local extremum and Fermat principle; the second order conditions for extrema. The method of Lagrange Multipliers. The definition of the Riemann integral; the integral and operations, criteria for integrability, inequalities and mean value theorems for the Riemann integral. The relation between the Riemann integral and uniform convergence. Lebesgue's theorem. Fubini's theorem. Jordan measure and its properties; integration over Jordan measurable sets. Fubini's theorem on simple regions, change of variables. Functions of bounded variation, total variation, decomposition theorem of Jordan. The Riemann-Stieltjes integral and its properties. Integration by parts. Sufficient condition for Riemann-Stieltjes integrability and the computation of the integral. Line integral; potential function and antiderivative. Necessary and sufficient conditions for the existence of antiderivatives.

Literature

Compulsory:-
Recommended:
W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1964.
K. R. Stromberg: An introduction to classical real analysis. Wadsworth, California, 1981.

Schedule:

$I^{s t}$ week Metric spaces. Limit of sequences and completeness. The Banach fixed point theorem. Characterization of Banach spaces among normed spaces. Compactness in normed spaces. The equivalence of the norms in finite dimensional normed spaces. Examples.
$2^{\text {nd }}$ week The norm of linear mappings, characterizations of bounded linear maps. The structure of the space of linear maps. Convergence of Neumann series. The topological structure of invertible linear self-maps in a Banach space. The open mapping theorem and its consequences.
$3^{\text {rd }}$ week The notion of Fréchet derivative and its uniqueness. The connection of differentiability and continuity. The Fréchet derivative of affine and bilinear maps. The chain rule and its consequences.
$4^{\text {th }}$ week The Hahn-Banach theorem for normed spaces and the Lagrange mean value inequality. Strict and continuous Fréchet differentiability. The inverse and implicit function theorems.
$5^{\text {th }}$ week The notions of directional and partial derivatives and their connection to Fréchet differentiability. The representation of the Fréchet derivative via partial derivatives. Sufficient condition for Fréchet differentiability, the characterization of continuous differentiability. $\sigma^{\text {th }}$ week Higher-order derivatives, the Schwarz-Young theorem and the Taylor theorem. Local minimum and maximum, the Fermat principle. Characterizations of positive definite and positive semidefinite quadratic forms. The second-order necessary and sufficient conditions of optimality. Constrained optimization and the method of Lagrange Multipliers.
$7^{\text {th }}$ week Compact intervals in Euclidean spaces. Partitions of intervals. The lower and upper Riemann sums of bounded functions and their basic properties. The lower and upper Darboux integrals and their properties. The Darboux theorem. The additive interval property of the Darboux integrals.
$8^{\text {th }}$ week The notion of Riemann integral and examples for non-integrability. The linearity and additive interval property of Riemann integral. The Riemann criterion of integrability. Further criteria of integrability.
$9^{\text {th }}$ week Integrability and continuity. Sufficient conditions of integrability. Operations with Riemann integrable functions. Mean value theorem for the Riemann integral. Uniform convergence and integrability. The structure of the space of Riemann integrable functions.
$10^{\text {th }}$ week Computation of the Riemann integral, the Fubini theorem and its consequences. Null sets in the sense of Lebesgue and their properties. The characterization of Riemann integrability via the Lebesgue criterion.
$11^{\text {th }}$ week The Jordan measure and its properties. Characterization of Jordan measurability and Jordan null sets. The Riemann integral over Jordan measurable sets. Algebraic properties, connection of integrability and continuity. The Fubini theorem on simple regions. Change of variables.
$12^{\text {th }}$ week Functions of bounded variation and their structure. The additive interval property of total variation, the Jordan decomposition theorem and its corollaries. The computation of the total variation.
$13^{\text {th }}$ week The Riemann-Stieltjes integral, its bilinearity and additive interval property. Integration by parts. Sufficient conditions for Riemann-Stieltjes integrability and the computation of the integral.
$14^{\text {th }}$ week Curves and the length of curves. The line integral of vector fields. Antiderivative (potential) of vector fields. The Newton-Leibniz theorem. Differentiation of parametric integrals. The necessary and sufficient conditions for the existence of antiderivatives.

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an examination. Before the examination students must have grade at least 'pass' on Differential and integral calculus in several variables practice (TTMBG0216). The grade for the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-61$	pass (2)
$62-74$	satisfactory (3)

75-87	good (4)
$88-100$	excellent (5)

If the average of the score of the examination is below 50 , students can take a retake examination in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Prof. Dr. Zsolt Páles, university professor, DSc
Lecturer: Prof. Dr. Zsolt Páles, university professor, DSc

Title of course: Differential and integral calculus in several variables

Type of teaching, contact hours

- lecture: -
- practice: 3 hours/week
- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 24 hours
- preparation for the tests: 24 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0215
Further courses built on it:

Topics of course

The Fréchet derivative, directional derivative, partial derivative. Examples for differentiability and non-differentiability. Computation of the derivatives, chain rule. The inverse and implicit function theorems. Further notions of differentiability, the representation of the Fréchet derivative. Higher order derivatives; Schwarz-Young theorem, Taylor's theorem. Local extremum and Fermat principle; the second-order conditions for extrema. The method of Lagrange Multipliers. The computation of the Riemann integral; the integral and operations, criteria for integrability. Fubini's theorem. Jordan measure and its properties; integration over Jordan measurable sets. Fubini's theorem on simple regions, change of variables. Functions of bounded variation, total variation. The Riemann-Stieltjes integral, integration by parts. The computation of the integral. Line integral; potential function and antiderivative.

Literature

Compulsory:-

Recommended:

W. Rudin: Principles of Mathematical Analysis. McGraw-Hill, 1964.
K. R. Stromberg: An introduction to classical real analysis. Wadsworth, California, 1981.

Schedule:

$I^{s t}$ week Limit of vector-valued functions in several variables. Checking Fréchet differentiability, directional differentiability, partial differentiability by definition.
$2^{\text {nd }}$ week The representation of the derivative in terms of partial derivatives. Computation of the directional and partial derivatives. Applications of the chain rule.
$3^{\text {rd }}$ week The inverse and implicit function theorems, implicit differentiation. Higher-order derivatives and differentials. Applications of the Taylor theorem.
$4^{\text {th }}$ week The Fermat principle for local minimum and maximum. Characterization of positive definite and positive semidefinite quadratic forms. The second-order necessary and sufficient conditions of optimality.
$5^{\text {th }}$ week Optimization problems with equality and inequality constraints and applications of the
method of Lagrange Multipliers.
$6^{\text {th }}$ week Survey of the results and methods of the $1^{\text {st }}-5^{\text {th }}$ weeks.
$7^{\text {th }}$ week Mid-term test.
$8^{\text {th }}$ week Computation of the Riemann integral using the Fubini theorem. The Jordan measure of bounded sets.
$9^{\text {th }}$ week Computation of the Riemann integral using change of variables.
$10^{\text {th }}$ week Functions of bounded and of unbounded variation. The computation of total variation.
$11^{\text {th }}$ week The Riemann-Stieltjes integral and the line integral.
$12^{\text {th }}$ week Existence and non-existence of the primitive function (potential function) of vector fields.
$13^{\text {th }}$ week Survey of the results and methods of the $8^{\text {th }}-12^{\text {th }}$ weeks.
$14^{\text {th }}$ week End-term test.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the mid-term test in the $7^{\text {th }}$ week and the end-term test in the $14^{\text {th }}$ week. Students have to sit for the tests.

- for a grade

The minimum requirement for the average of the mid-term and end-term tests is 50%.

Score	Grade
$0-49$	fail (1)
$50-61$	pass (2)
$62-74$	satisfactory (3)
$75-87$	good (4)
$88-100$	excellent (5)

If the average of the scores of the tests is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Prof. Dr. Zsolt Páles, university professor, DSc
Lecturer: Prof. Dr. Zsolt Páles, university professor, DSc

Title of course: Ordinary differential equations

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $3^{\text {rd }}$ year, 1 st semester
Its prerequisite(s): TTMBE0216
Further courses built on it:

Topics of course

Differential equations solvable in an elementary way. Cauchy problem; solution, maximal solution, locally and globally unique solution. Lipschitz condition; the theorem on global-local existence and uniqueness. Continuous dependence on the initial value. The Arzelà-Ascoli theorem and Peano's theorem. First order linear systems of differential equations; fundamental matrix, Liouville's formula, variation of constants. The construction of fundamental matrices of linear systems of differential equations with constant coefficients. Higher order (linear) differential equations and the Transition Principle; Wronski determinant and Liouville's formula. Fundamental sets of solutions of higher order linear differential equations with constant coefficients. Stability; Gronwall-Bellmann lemma and the stability theorem of Lyapunov. Elements of calculus of variations: the Du Bois-Reymond lemma and the Euler-Lagrange equations. Applications.

Literature

Compulsory/Recommended:

E. A. Coddington, N. Levinson: Theory of Ordinary Differential Equations. McGraw-Hill, 1955.

Schedule:

$I^{\text {st }}$ week
Ordinary explicit differential equations of first order solvable in an elementary way.
Separable, linear and exact equations. The Euler multiplicator.
$2^{\text {nd }}$ week
The notion of the Cauchy problem with respect to ordinary explicit differential equation systems of first order. Solution, complete solution, unique solution. Sufficient condition for the existence of the complete solution, global and local solvability.

$3^{\text {rd }}$ week

Complete metric spaces. The parametric version of the Banach fixed-point theorem. Weighted
function spaces; The Cauchy problem and its equivalent integral equation.
$4^{\text {th }}$ week
Lipschitz properties. Global existence and uniqueness theorem. Continuous dependence on initial value; local existence and uniqueness theorem.
$5^{\text {th }}$ week
Compact operators; Schauder's fixed point theorems. Compact subsets of the space of continuous functions on intervals. Equicontinuity and uniform boundedness. Arzelà-Ascoli theorem.
$6^{\text {th }}$ week
Peano's existence theorem.
$7^{\text {th }}$ week
Linear differential equation systems of first order and their existence and uniqueness. Fundamental system and fundamental matrix; Liouville's formula. The method of constant variation.
$8^{\text {th }}$ week
The general theory of linear differential equation systems with constant coefficients: spectral radius, expression of analytic functions of matrices, the fundamental system of linear differential equation systems of first order with constant coefficient.
$9^{\text {th }}$ week
The general theory of explicit differential equations of higher order: transmission principle, Global existence and uniqueness theorem. Cauchy problem for higher order linear differential equations. The concept and the existence of the fundamental system; Wronski-determinant and Liouville formula.

$10^{\text {th }}$ week

Equivalent characterization of the fundamental system of a higher order linear linear differential equation. The constant variation method. The fundamental system of higher order homogeneous linear differential equations with constant coefficients.
$11^{\text {th }}$ week
Elements of stability theory. Definition of unstable, stable and asymptotically stable solution. Stability of the null-solution of homogeneous linear differential equation systems with constant coefficients.
$12^{\text {th }}$ week
The Gronwall-Bellmann lemma and the stability theorem of Lyapunov.
$13^{\text {th }}$ week
Elements of calculus of variation. The set of admissible functions and its topology. The differentiation of the perturbed basic functional and the Du-Bois-Reymond lemma.
$14^{\text {th }}$ week
The Euler-Lagrange differential equations. Applications: the problem of minimal surface solid of revolution, the Poincaré half-circle model of Bolyai-Lobachevsky's geometry. The Lagrange
discussion of classical mechanics.

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an examination. Before the examination students must have grade at least 'pass' on ordinary differential equations practice (TTMBG0217).
The grade for the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-61$	pass (2)
$62-74$	satisfactory (3)
$75-87$	good (4)
$88-100$	excellent (5)

If the average of the score of the examination is below 50 , students can take a retake examination in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Prof. Dr. György Gát, university professor, DSc
Lecturer: Prof. Dr. György Gát, university professor, DSc

Title of course: Ordinary differential equations

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
- laboratory: -
```

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 14 hours
- preparation for the tests: 18 hours

Total: 60 hours
Year, semester: $3^{\text {nd }}$ year, 1st semester
Its prerequisite(s): Differential and integral calculus in several variables: TTMBE0216

Further courses built on it:

Topics of course

Differential equations solvable in an elementary way.
Linear differential equation systems of first order; fundamental matrix, Liouville formula, constant variation. Construction of the fundamental matrix of linear differential equation systems with constant coefficients. Higher order (linear) differential equations and transmission principles; Wronski determinant and Liouville formula. Fundamental system of linear differential equations with constant coefficients. Elements of calculus variation: Du Bois-Reymond lemma and EulerLagrange equation.

Literature

Compulsory/Recommended:
E. A. Coddington, N. Levinson: Theory of Ordinary Differential Equations. McGraw-Hill, 1955.

Schedule:

$I^{\text {st }}$ week
Differential equations solvable in an elementary way. Separable equations.
$2^{\text {nd }}$ week
Differential equations of type that can be traced back into a separable equation (linear substitution, homogeneous equations).
$3^{\text {rd }}$ week
Types that can be traced back into a separable equation (linear fractional substitution).

$4^{\text {th }}$ week

Differential equations that can be solved in an elementary way: first order linear equations. Bernoulli and Riccati equations.

$5^{\text {th }}$ week

Differential equations that can be solved in an elementary way: exact equations, Euler's multipliers.
$6^{\text {th }}$ week
Summarize, practice and deepen the foregoing.
$7^{\text {th }}$ week
Test
$8^{\text {th }}$ week
First order homogeneous linear differential equation systems with constant coefficients.
Construction of the fundamental system. Expression of analytic functions of matrices.
$9^{\text {th }}$ week
First order inhomogeneous linear differential equation systems with constant coefficient. The constant variation method
$10^{\text {th }}$ week
Higher order linear equations with constant coefficients. Transmission principle, Characteristic polynomial, reduced constant variation, test function.
$11^{\text {th }}$ week
Higher linear linear equations with variable coefficients. Wronski determinant, Liouville formula and D'Alembert reduction.
$12^{\text {th }}$ week
Elements of calculus of variation. The Euler-Lagrange differential equations.
$13^{\text {th }}$ week
Summarize, practice and deepen the foregoing.
$14^{\text {th }}$ week
Test

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the mid-term test in the $7^{\text {th }}$ week and the end-term test in
the $14^{\text {th }}$ week. Students have to sit for the tests.

- for a grade

The minimum requirement for the average of the mid-term and end-term tests is 50%. The score is the average of the scores of the two tests and the grade is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-61$	pass (2)
$62-74$	satisfactory (3)
$75-87$	good (4)
$88-100$	excellent (5)

If the average of the scores is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Prof. Dr. György Gát, university professor, DSc
Lecturer: Prof. Dr. György Gát, university professor, DSc

Title of course: Geometry 1 .

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: 1st year, 1st semester
Its prerequisite(s): TTMBG0301 (p)
Further courses built on it: Geometry 2.

Topics of course

Absolute Geometry: incidence axioms, ruler postulate, plane separation postulate, protractor postulate and the axiom of congruence. Some representative results in Absolute Geometry: congruence theorems, perpendicular and parallel lines, sufficient conditions for parallelism, inequalities. The Euclidean parallel postulate and some equivalent statements. Introduction to the Euclidean geometry (theorems for parallelograms, Intercept theorem and its relatives, similar triangles). Euclidean plane isometries: three mirrors suffice, the classification theorem. The classification of the Euclidean space isometries. Similarities, the fixpoint theorem and the classification of plane/space similarities. The general notion of congruence and similarity. Geometric measure theory: area of polygons, Jordan measure, the area of a circle. The axioms of measuring volumes, the volume of a sphere. The perimeter of a circle, the area of a sphere.

Literature

Compulsory/Recommended Readings:
Csaba Vincze and László Kozma: College Geometry, TÁMOP-4.1.2.A/1-11/1-2011-0098, http://www. tankonyvtar. hu/hu/tartalom/tamop412A/2011-
0098_col lege_geometry/index. htm |
John Roe: Elementary Geometry, Oxford University Press, 1993.

Schedule:

$I^{s t}$ week
Incidence axioms.
$2^{\text {nd }}$ week
Ruler postulate, plane separation postulate.
$3^{\text {rd }}$ week
Protractor postulate and the axiom of congruence.
$4^{\text {th }}$ week
Some representative results in Absolute Geometry: congruence theorems.
$5^{\text {th }}$ week
Some representative results in Absolute Geometry: perpendicular and parallel lines, sufficient conditions for parallelism.
$6^{\text {th }}$ week
Inequalities.
$7^{\text {th }}$ week
The Euclidean parallel postulate and some equivalent statements.
$8^{\text {th }}$ week
Introduction to the Euclidean geometry (theorems for parallelograms, Intercept theorem and its relatives, similar triangles).
$9^{\text {th }}$ week
Euclidean plane isometries: three mirrors suffice, the classification theorem.
$10^{\text {th }}$ week
The classification of the Euclidean space isometries.
$11^{\text {th }}$ week
Similarities, the fixpoint theorem and the classification of plane/space similarities. The general notion of congruence and similarity.
$12^{\text {th }}$ week
Geometric measure theory: area of polygons, Jordan measure, the area of a circle.
$13^{\text {th }}$ week
The axioms of measuring volumes, the volume of a sphere.
$14^{\text {th }}$ week
The perimeter of a circle, the area of a sphere.

Requirements:

- for a signature
- for a grade

Attendance at lectures is recommended, but not compulsory. The course ends in an examination. A practice grade at least 2 (pass) is a prerequisite to take an exam. The minimum requirement of the exam is more than 60%. The grade is given according to the following table:

Percent	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

-an offered grade:
Person responsible for course: Dr. Csaba Vincze, associate professor, PhD
Lecturer: Dr. Csaba Vincze, associate professor, PhD

Title of course: Geometry 1.

Type of teaching, contact hours

- lecture:
- practice: 2 hours/week
- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture:
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses built on it: Geometry 2.

Topics of course

Triangles and circles. Trigonometry and its applications (inaccessible distances, visibility angles). Coordinate geometry and its applications (triangles and circles), intersections. Ruler-and-compass constructions. Inversive geometry, Mohr-Masceroni's theorem. The problem of Apollonius. Conics and the reflective properties (tangent lines to ellipses, paraboles and hyperboles). Ruler-and-compass constructions related to conics. The geometry of the space (area, volume), revolution surfaces. Conic sections. The sphere (longitude and latitude), mappings of the sphere to the plane.

Literature

Compulsory/Recommended Readings:

Csaba Vincze and László Kozma: College Geometry, TÁMOP-4.1.2.A/1-11/1-2011-0098, http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0098_college_geometry/index.html John Roe: Elementary Geometry, Oxford University Press, 1993.

Schedule:

$I^{s t}$ week
Triangles.
$2^{\text {nd }}$ week
Circles.
$3^{\text {rd }}$ week
Trigonometry and its applications (inaccessible distances, visibility angles).
$4^{\text {th }}$ week
Coordinate geometry and its applications (triangles).
$5^{\text {th }}$ week
Coordinate geometry and its applications (circles).

$$
\sigma^{\text {th }} \text { week }
$$

Intersections.
$7^{\text {th }}$ week
Ruler-and-compass constructions.
$8^{\text {th }}$ week
Inversive geometry.
$9^{\text {th }}$ week
Mohr-Masceroni's theorem.
$10^{\text {th }}$ week
The problem of Apollonius.
$11^{\text {th }}$ week
Conics and the reflective properties (tangent lines to ellipses, paraboles and hyperboles). Ruler-and-compass constructions.
$12^{\text {th }}$ week
The geometry of the space (area, volume).
$13^{\text {th }}$ week
Revolution surfaces. Conic sections.
$14^{\text {th }}$ week
The sphere (longitude and latitude), mappings of the sphere to the plane.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade

During the semester there are two tests. The minimum requirement for a grade is to get more than 60% of the total score of the two tests, separately. The grade is given according to the following table:

Percent	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

If the score of any test is below 60%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS. The final grade is the average of the grades of the two tests by the usual rules of rounding.
-an offered grade: -
Person responsible for course: Dr. Csaba Vincze, associate professor, PhD
Lecturer: Dr. Csaba Vincze, associate professor, PhD

Title of course: Geometry 2.

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: 1st year, 2nd semester
Its prerequisite(s): TTMBE0102, TTMBG0302 (p)
Further courses built on it: Differential geometry

Topics of course

Euclidean-Affin Geometry: vectors. Affine transformations, translations and central similarities. The ratio of three collinear points. Some representative results in Affine Geometry: Ceva's theorem, Menelaus' theorem. Analytic Euclidean-Affine geometry. Linear transformations, the general linear group. The analytic description of affine transformations. The fundamental theorem. Dot and cross product, vector triple product: the geometric characterization and the analytic formulas. Higher dimensional analytic geometry: reflections and isometries of the n-dimensional Euclidean space. The orthogonal group. Lower dimensional cases: two- and three-dimesnional spaces. Coordinate geometry: lines and planes. Implicite and parametric forms. Quadratic curves and surfaces. An introduction to Convex Geometry: convex sets and convex hulls. Carathéodory's theorem. Radon's lemma and Helly's theorem. Convex polygons and polyhedra. Euler's theorem, Descartes' theorem, regular convex polyhedra.

Literature

Compulsory/Recommended Readings:

S. R. Lay: Convex Sets and Their Applications, John Wiley \& Sons, Inc., 1982.

John Roe: Elementary Geometry, Oxford University Press, 1993.
Csaba Vincze: Convex Geometry, TÁMOP-4.1.2.A/1-11/1-2011-0025, http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011_0025_mat_14/index.html

Schedule:

$I^{s t}$ week
Euclidean-Affin Geometry: vectors.
$2^{\text {nd }}$ week
Affine transformations, translations and central similarities.
$3^{r d}$ week
The ratio of three collinear points. Some representative results in Affine Geometry: Ceva's
theorem, Menelaus' theorem.
$4^{\text {th }}$ week
Analytic Euclidean-Affine geometry. Linear transformations, the general linear group.
$5^{\text {th }}$ week
The analytic description of affine transformations. The fundamental theorem.
$6^{\text {th }}$ week
Dot and cross product: the geometric characterization and the analytic formulas.
$7^{\text {th }}$ week
Vector triple product: the geometric characterization and the analytic formula.
$8^{\text {th }}$ week
Higher dimensional analytic geometry: reflections and isometries of the n-dimensional Euclidean space.
$9^{\text {th }}$ week
The orthogonal group.
$10^{\text {th }}$ week
Lower dimensional cases: two- and three-dimesnional spaces.
$11^{\text {th }}$ week
Coordinate geometry: lines and planes. Implicite and parametric forms.
$12^{\text {th }}$ week
Quadratic curves and surfaces.
$13^{\text {th }}$ week
An introduction to Convex Geometry: convex sets and convex hulls. Carathéodory's theorem. Radon's lemma and Helly's theorem.
$14^{\text {th }}$ week
Convex polygons and polyhedra. Euler's theorem, Descartes' theorem, regular convex polyhedra

Requirements:

- for a signature
- for a grade

Attendance at lectures is recommended, but not compulsory. The course ends in an examination. A practice grade at least 2 (pass) is a prerequisite to take an exam. The minimum requirement of the exam is more than 60%. The grade is given according to the following table:

Percent	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

-an offered grade:
Person responsible for course: Dr. Csaba Vincze, associate professor, PhD
Lecturer: Dr. Csaba Vincze, associate professor, PhD

Title of course: Geometry 2.

Type of teaching, contact hours

```
- lecture:
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: 1st year, 2nd semester
Its prerequisite(s): TTMEG0301
Further courses built on it: Differential geometry

Topics of course

The solution of geometric problems by vector algebra. The barycenter of a triangle and a tetrahedron. Linear dependency and independency, basis, coordinates. The simple ratio. The ellipse as the affine image of a circle. The area of an ellipse, compass-and-ruler constructions and the coordinate geometry of conics. Scalar, vector and mixed products. Computations in higher dimensional Euclidean vector spaces. Hyperplanes and reflections (analytic description). Reflections about lines and planes, rotations around lines and points. Lines, circles, planes and spheres. Intersections, distance and angles. Curves and surfaces (ruled- and revolution surfaces) implicit forms and parametrizations. Rolling without slipping: the cycloid. Twisted surfaces. Convex geometry.

Literature

Compulsory/Recommended Readings:
Csaba Vincze and László Kozma: College Geometry, TÁMOP-4.1.2.A/1-11/1-2011-0098, http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-0098_college_geometry/index.html John Roe: Elementary Geometry, Oxford University Press, 1993.
Vincze Csaba: Convex Geometry, University of Debrecen, 2013, TÁMOP-4.1.2.A/1-11/1-20110025.

Schedule:

$1^{s t}$ week
The solution of geometric problems by vector algebra.
$2^{\text {nd }}$ week
The barycenter of a triangle and a tetrahedron.
$3^{\text {rd }}$ week
Linear dependency and independency, basis, coordinates.
$4^{\text {th }}$ week

The simple ratio.

$$
5^{\text {th }} \text { week }
$$

The ellipse as the affine image of a circle. The area of an ellipse.
$6^{\text {th }}$ week
Compass-and-ruler constructions.
$7^{\text {th }}$ week
The coordinate geometry of conics.
$8^{\text {th }}$ week
Scalar, vector and mixed products.
$9^{\text {th }}$ week
Computations in higher dimensional Euclidean vector spaces. Hyperplanes and reflections (analytic description).
$10^{\text {th }}$ week
Reflections about lines and planes, rotations around lines and points
$11^{\text {th }}$ week
Lines, circles, planes and spheres. Intersections, distance and angles.
$12^{\text {th }}$ week
Curves and surfaces (ruled- and revolution surfaces) implicit forms and parametrizations.
$13^{\text {th }}$ week
Rolling without slipping: the cycloid. Twisted surfaces.
$14^{\text {th }}$ week
Convex geometry.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade

During the semester there are two tests. The minimum requirement for a grade is to get more than 60% of the total score of the two tests, separately. The grade is given according to the following table:

Percent	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

If the score of any test is below 60%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS. The final grade is the average of the grades of the two tests by the usual rules of rounding.
-an offered grade: -
Person responsible for course: Dr. Csaba Vincze, associate professor, PhD
Lecturer: Dr. Csaba Vincze, associate professor, PhD

Title of course: Differential geometry
Code: TTMBE0303
Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 22 hours
- preparation for the exam: 40 hours

Total: 90 hours
Year, semester: $3^{\text {rd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0302, TTMBE0216
Further courses built on it: -

Topics of course

Introduction to the basic concepts, methods and theories of classical differential geometry: A curve in the 2- or 3-dimensional Euclidean plane space. Curvature and torsion. Surfaces in the Euclidean space. The first and second fundamental form of parameterized surfaces. Measurement on a surface. Curvature of a surface. Relationships between basic fundamental quantities. Parallelism on a surface. Geodesics. Variation of arc length. The minimizing properties of geodesics.

Literature

Compulsory: -
Recommended:
M. do Carmo: Differential Geometry of curves and Surfaces,
M. Spivak: A Comprehensive Introduction to Differential Geometry, Vol. 3,
B. O'Neill: Elementary Differential Geometry

Schedule:

$1^{s t}$ week
A regular smooth curve in the Euclidean space. Parametrization and reparametrization of curves.
Arc-length. Natural parametrization.
$2^{n d}$ week
Curvature of regular planar curves. Frenet base. Winding number of closed curves. Fundamental theorem of planar curves.
$3^{r d}$ week
Biregular curves in the 3-dimensional Euclidean space. Frenet-basis, curvature and torsion of a biregular curve.
$4^{\text {th }}$ week
Cartan matrix associated to a biregular curve. Fundamental theorem of curves in the 3-dimensional Euclidean space.
$5^{\text {th }}$ week
Surfaces in the Euclidean space. Parametrization of surfaces. Tangent space, normal direction at a point.
$6^{\text {th }}$ week
Measurement on surfaces. The first fundamental form of parametrized elemental surfaces. The arc length and angle of curves on surfaces. Surface area.
$7^{\text {th }}$ week
The second fundamental form of parametrized surfaces. Osculating paraboloids, Dupin indicatrix, classification of points on surfaces.
$8^{\text {th }}$ week
Gauss and Weingarten maps. Curvature curves on surfaces. Normal curvature. Meusnier's theorem.
$9^{\text {th }}$ week
Main or principal curvatures and directions. Rodriguez's theorem, Euler's formula. Product curvature and average curvature.
$10^{\text {th }}$ week
The Gauss basis associated to the parametrized surfaces. Christoffel symbols. Relationships between basic fundamental quantities. Theorema egregium. Bonnet's theorem.
$11^{\text {th }}$ week
Parallelism on a surface. Parallel translation along a curve. Geodesic curves on a surface. Geodesic curvature.
$12^{\text {th }}$ week
Variation problem of arc length. The minimizing properties of geodesics.
$13^{\text {th }}$ week
The Gauss-Bonnet theorem.
$14^{\text {th }}$ week
Surfaces with constant curvature.

Requirements:

Only students who have signature from the practical part can take part of the exam. The exam is written. The grade is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-74$	satisfactory (3)
$75-86$	good (4)
$87-100$	excellent (5)

Person responsible for course: Dr. Zoltán Muzsnay, associate professor, PhD
Lecturer: Dr. Zoltán Muzsnay, associate professor, PhD

Title of course: Differential geometry

Type of teaching, contact hours

- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: 18 hours
- preparation for the exam:

Total: 60 hours
Year, semester: $3^{\text {rd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0302, TTMBE0216
Further courses built on it: -

Topics of course

Introduction to the basic concepts, methods and theories of classical differential geometry: A curve in the 2- or 3-dimensional Euclidean plane space. Curvature and torsion. Surfaces in the Euclidean space. The first and second fundamental form of parameterized surfaces. Measurement on a surface. Curvature of a surface. Relationships between basic fundamental quantities. Parallelism on a surface. Geodesics. Variation of arc length. The minimizing properties of geodesics.

Literature

Compulsory:
Recommended:
M. do Carmo: Differential Geometry of curves and Surfaces,
M. Spivak: A Comprehensive Introduction to Differential Geometry, Vol. 3,
B. O'Neill: Elementary Differential Geometry

Schedule:

$I^{s t}$ week
A regular smooth curve in the Euclidean space. Parametrization and reparametrization of curves. Arc-length. Natural parametrization.
$2^{\text {nd }}$ week
Curvature of regular planar curves. Frenet base. Winding number of closed curves. Fundamental theorem of planar curves.
$3^{\text {rd }}$ week
Biregular curves in the 3-dimensional Euclidean space. Frenet-basis, curvature and torsion of a biregular curve.
$4^{\text {th }}$ week
Cartan matrix associated to a biregular curve. Fundamental theorem of curves in the 3-dimensional Euclidean space.
$5^{\text {th }}$ week

Surfaces in the Euclidean space. Parametrization of surfaces. Tangent space, normal direction at a point.
$6^{\text {th }}$ week
Measurement on surfaces. The first fundamental form of parametrized elemental surfaces. The arc length and angle of curves on surfaces. Surface area.
$7^{\text {th }}$ week
The second fundamental form of parametrized surfaces. Osculating paraboloids, Dupin indicatrix, classification of points on surfaces.
$8^{\text {th }}$ week
Test. Gauss and Weingarten maps. Curvature curves on surfaces. Normal curvature. Meusnier's theorem.
$9^{\text {th }}$ week
Main or principal curvatures and directions. Rodriguez's theorem, Euler's formula. Product curvature and average curvature.
$10^{\text {th }}$ week
The Gauss basis associated to the parametrized surfaces. Christoffel symbols. Relationships between basic fundamental quantities. Theorema egregium. Bonnet's theorem.
$11^{\text {th }}$ week
Parallelism on a surface. Parallel translation along a curve. Geodesic curves on a surface. Geodesic curvature.
$12^{\text {th }}$ week
Variation problem of arc length. The minimizing properties of geodesics.
$13^{\text {th }}$ week
Surfaces with constant curvature.
$14^{\text {th }}$ week
Test

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade

During the semester one test is written. The grade is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-84$	good (4)
$85-100$	excellent (5)

Students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Zoltán Muzsnay, associate professor, PhD
Lecturer: Dr. Zoltán Muzsnay, associate professor, PhD

Title of course: Vector Analysis

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: 3rd year, 2nd semester
Its prerequisite(s): TTMBE0216, TTMBG0304(p)
Further courses built on it: -

Topics of course

Scalar fields: level curves and surfaces. The gradient and its geometric interpretation. Vector fields, the invariants of the Jacobian matrix: divergence and rotation (the vector invariant of the skewsymmetric part of the Jacobian). The Laplace operator. Parametrized curves, line integrals and work done. Stokes' theorem and its applications in the plane: conservative vector fields and potential (path independence for line integrals, rotation-free vector fields, exact differential equations). Parametrized surfaces, surface integrals: the flux. Gauss-Ostrogradsky theorem and Stokes' theorem in the space. Divergence and flux density. Rotation and circulation density. Identities and computational rules for vector operators: gradient, divergence and rotation. The derivative of the determinant function: the special linear group and its Lie algebra. The orthogonal group and its Lie algebra. Displacement fields: strain and rotational tensors. Integral curves and flows. Divergence-free vector fileds (Liouville theorem, incompressible flows). Harmonic, subharmonic and superharmonic functions, the maximum principle.

Literature

Compulsory/Recommended Readings:
M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations, Springer New York, 1984.
E. C. Young: Vector and Tensor Analysis, New York : M. Dekker, 1978.

Schedule:

$I^{s t}$ week

Scalar fields: level curves and surfaces. The gradient and its geometric interpretation.
$2^{\text {nd }}$ week
Vector fields, the invariants of the Jacobian matrix: divergence and rotation (the vector invariant of the skew-symmetric part of the Jacobian). The Laplace operator.
$3^{\text {rd }}$ week
Parametrized curves, line integrals and work done.

```
4th week
Stokes' theorem and its applications in the plane: conservative vector fields and potential (path
independence for line integrals, rotation-free vector fields, exact differential equations).
5th week
Parametrized surfaces, surface integrals: the flux.
G
Gauss-Ostrogradsky theorem.
7h}\mathrm{ week
Stokes' theorem in the space.
8th week
Divergence and flux density. Rotation and circulation density.
9th}\mathrm{ week
Identities and computational rules for vector operators: gradient, divergence and rotation.
10,h}\mathrm{ week
The derivative of the determinant function: the special linear group and its Lie algebra.
11 th week
The orthogonal group and its Lie algebra.
12 th week
Displacement fields: strain and rotational tensors.
134
Integral curves and flows. Divergence-free vector fields (Liouville theorem, incompressible
flows).
14 th week
Harmonic, subharmonic and superharmonic functions, the maximum principle.
```


Requirements:

- for a signature
- for a grade

Attendance at lectures is recommended, but not compulsory. The course ends in an examination. A practice grade at least 2 (pass) is a prerequisite to take an exam. The minimum requirement of the exam is more than 60%. The grade is given according to the following table:

Percent	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

-an offered grade:
Person responsible for course: Dr. Csaba Vincze, associate professor, PhD
Lecturer: Dr. Csaba Vincze, associate professor, PhD

Title of course: Vector analysis

Type of teaching, contact hours

```
- lecture:
- practice: 2 hours/week
- laboratory: -
Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:
- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours
Total: 60 hours
Year, semester: 3rd year, 2nd semester
Its prerequisite(s): TTMBE0216, TTMBG0304(p)
Further courses built on it: -
```


Topics of course

Scalar fields. Gradient and its geometric interpretation (level sets). Vector fields. Divergence and rotation. Laplacian. Identities. Parameterized curves. Line integrals. Stokes theorem in the plane and its applications: conservativity, potential, exact differential equations. Paremeterized surfaces. Surface integrals. Gauss-Ostrogradsky theorem and its consequences. Stokes theorem in the space and its applications. Newton's law of gravitation and its consequences: the conservativity of the gravitational field. Kepler's laws. Coordinate transforms and Jacobian (polar coordinates in the plane and in the space, cylindrical coordinates). The special linear group. The orthogonal group and its tangent space at the identity. Vector fields, integral curves and flows. Applications in the theory of differential equations. The maximum principle and its applications.

Literature

M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations, Springer New York, 1984.
E. C. Young: Vector and tensor analysis, New York : M. Dekker, 1978.

Schedule:

$I^{\text {st }}$ week
Scalar fields and the gradient.
$2^{\text {nd }}$ week
Vector fields. Divergence and rotation. Laplacian.
$3^{\text {rd }}$ week
Identities and computational rules.
$4^{\text {th }}$ week
The parameterization of curves. Line integrals.
$5^{\text {th }}$ week

Stokes theorem in the plane and its applications: conservativity, potential, exact differential equations.
$6^{\text {th }}$ week
The parametrization of surfaces. Surface integrals.
$7^{\text {th }}$ week
Gauss-Ostrogradsky theorem and Stokes theorem in the space.
$8^{\text {th }}$ week
Newton's law of gravitation and its consequences: the conservativity of the gravitational field.
$9^{\text {th }}$ week
Kepler's laws.
$10^{\text {th }}$ week
Coordinate transforms and Jacobian (polar coordinates in the plane and in the space, cylindrical coordinates).
$11^{\text {th }}$ week
The special linear group. The orthogonal group and its tangent space at the identity.
$12^{\text {th }}$ week
Vector fields, integral curves and flows.
$13^{\text {th }}$ week
Applications in the theory of differential equations.
$14^{\text {th }}$ week
The maximum principle. Harmonic-, subharmonic and superharmonic functions.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade

During the semester there are two tests. The minimum requirement for a grade is to get more than 60% of the total score of the two tests, separately. The grade is given according to the following table:

Percent	Grade
$0-60$	fail (1)
$61-70$	pass (2)
$71-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

If the score of any test is below 60%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS. The final grade is the average of the grades of the two tests by the usual rules of rounding.
-an offered grade: -
Person responsible for course: Dr. Csaba Vincze, associate professor, PhD
Lecturer: : Dr. Csaba Vincze, associate professor, PhD

Title of course: Measure and integral theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0215
Further courses built on it: TTMBE0401, TTMBG0401

Topics of course

Measure spaces and measures, their properties. Outer measures, pre-measures. Construction of measures. Lebesgue measure and its topological properties. Borel sets. The structure theorem of open sets. Approximation theorem. The properties of the Cantor set. Existence of non Lebesgue measurable sets. The Lebesgue-Stieltjes measure. Measurable functions and their basic properties, Lusin's theorem. Sequences of measurable functions. heorems of Lebesgue and Egoroff, Riesz's theorem on convergence in measure, approximation lemma. The Lebesgue integral of non-negative measurable functions. Beppo Levi's theorem, Fatou's lemma. The relation between the integral and the sum. Integrable functions. Lebesgue's majorized convergence theorem. The σ-additivity and the absolute continuity of the integral. The Lebesgue integral of complex functions. Lp spaces. Minkowski and Hölder inequality. The Riesz-Fischer theorem. The relation between the Riemann and the Lebesgue integral. Fubini's theorem. The ndimensional Lebesgue measure. Lebesgue's differentiability theorem. Functions of bounded variation and absolute continuous functions. Basic properties of antiderivatives. The NewtonLeibniz formula.

Literature

Compulsory:

- H. Federer (1969): Geometric Measure Theory, Springer-Verlag
- Paul R. Halmos (1950): Measure Theory, D. Van Nostrand Company, Inc.

Recommended:

- Anthony W. Knapp (2005): Basic Real Analysis, Birkhauser

Schedule:

$1^{s t}$ week
The definition of measure spaces and measures, and their most important properties.
$2^{\text {nd }}$ week
Outer measures and their characterization, the notion of premeasures. Construction of measures.

The definition of the Lebesgue measure.
$3^{r d}$ week
The notion of the Lebesgue measure and its most important topological properties. Borel sets. The structure theorem of open sets. Approximation theorem.
$4^{\text {th }}$ week
The construction and most important properties of the Cantor set. Existence of not Lebesgue measurable sets.
$5^{\text {th }}$ week
Lebesgue-Stieltjes measure. The definition and fundamental properties of measurable functions, Luzin theorem.
$6^{\text {th }}$ week
Sequences of measurable functions. The definition of convergence in measure and results related to it: theorems of Lebesgue and Egoroff, the selection theorem of Riesz, approximation lemma.
$7^{\text {hh }}$ week
The Lebesgue integral of nonnegative measurable functions and its basic properties. The theorem of Beppo Levi. Fatou lemma.
$8^{\text {th }}$ week
The relation between the integral and the sum. Integrable functions and their fundamental properties.
$9^{\text {th }}$ week
Lebesgue's majorized convergence theorem. The σ-additivity and the absolute continuity of the integral.
$10^{\text {th }}$ week
The Lebesgue integral of complex functions. Lp spaces. Minkowski and Hölder inequality. The Riesz-Fischer theorem.
$11^{\text {th }}$ week
The relation between the Riemann and the Lebesgue integral. Fubini's theorem. The n-dimensional Lebesgue measure.
$12^{\text {th }}$ week
Lebesgue's differentiability theorem.
$13^{\text {th }}$ week
Functions of bounded variation and absolute continuous functions. Basic properties of antiderivatives.
$14^{\text {th }}$ week

The Newton-Leibniz formula.

Requirements:

The course ends in an oral examination. The process of the exam is as follows. First, a topic out of cca. eight is chosen randomly. The list of possible topics is made available for the students before the exam period. Then, the chosen topic should be elaborated in writing. Based partly on what has been written, an oral discussion of the topic follows, which also contains a few questions about other topics. The performance of the student during the exam is evaluated by a grade.

Attendance of lectures is recommended, but not obligatory

Person responsible for course: Dr. Gergő Nagy, assistant professor, PhD
Lecturer: Dr. Gergő Nagy, assistant professor, PhD

Title of course: Probability theory

Type of teaching, contact hours

- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 42 hours
- practice: -
- laboratory:
- home assignment: 40 hours
- preparation for the exam: 38 hours

Total: 120 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0205
Further courses built on it: -

Topics of course

Probability, random variables, distributions. Asymptotic theorems of probability theory.

Literature

Compulsory:

- A. N. Shiryayev: Probability, Springer-Verlag, Berlin, 1984.
- Ash, R. B.: Real Analysis and Probability. Academic Press, New York-London, 1972.
- Bauer, H.: Probability Theory. Walter de Gruyter, Berlin-New York. 1996.

Schedule:

$I^{\text {st }}$ week
Statistical observations. Numerical and graphical characteristics of the sample. Relative frequency, events, probability. Classical probability. Finite probability space.
$2^{\text {nd }}$ week
Kolmogorov's probability space. Properties of probability. Finite and countable probability spaces.
Conditional probability, independence of events. Borel-Cantelli lemma.
$3^{\text {rd }}$ week
Total probability theorem, the Bayes rule. Discrete random variables. Expectation, Standard deviation. Binomial, hypergeometric, and Poisson distributions.
$4^{\text {th }}$ week
Random variables, distribution, cumulative distribution function. Absolutely continuous distribution, probability density function. The general notion of distribution.
$5^{\text {th }}$ week
Expectation, variance and median. Uniform, exponential, normal distributions.
$6^{\text {th }}$ week
Joint distribution function and joint probability density function of random variables. Independent random variables, correlation coefficient.

```
7h}\mathrm{ week
Multivariate distributions. Expectation vector and variance matrix of random a random vector.
Independence of random variables.
8th}\mathrm{ week
Multivariate normal distribution, concentration ellipsoid. Sample from normal distribution. Chi-
squared, Student's t, F-distributions.
gh week
Weak law of large numbers. Almost sure convergence, convergence in distribution, convergence
in probability, Lp convergence.
10,th}\mathrm{ week
Kolmogorov's inequality. Kolmogorov's three-series theorem. Strong laws of large numbers.
11 th week
Characteristic function and its properties. Inversion formulas. Continuity theorem
124}\mathrm{ week
Central limit theorem. Law of the iterated logarithm. Arcsine laws.
134
Conditional distribution function, conditional density function, conditional expectation.
144}\mathrm{ week
Comparison of the limit theorems.
Requirements:
- for a grade
Person responsible for course: Prof. Dr. István Fazekas, university professor, DSc
Lecturer: Prof. Dr. István Fazekas, university professor, DSc
```

Title of course: Probability theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 16 hours
- preparation for the exam: 16 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0205
Further courses built on it: -

Topics of course

Probability, random variables, distributions. Asymptotic theorems of probability theory.

Literature

Compulsory:

- A. N. Shiryayev: Probability, Springer-Verlag, Berlin, 1984.
- Ash, R. B.: Real Analysis and Probability. Academic Press, New York-London, 1972.
- Bauer, H.: Probability Theory. Walter de Gruyter, Berlin-New York. 1996.

Schedule:

$I^{s t}$ week
Statistical observations. Numerical and graphical characteristics of the sample. Relative frequency, events, probability. Classical probability. Finite probability space.
$2^{\text {nd }}$ week
Kolmogorov's probability space. Properties of probability. Finite and countable probability spaces.
Conditional probability, independence of events. Borel-Cantelli lemma.
$3^{\text {rd }}$ week
Total probability theorem, the Bayes rule. Discrete random variables. Expectation, Standard deviation. Binomial, hypergeometric, and Poisson distributions.
$4^{\text {th }}$ week
Random variables, distribution, cumulative distribution function. Absolutely continuous distribution, probability density function. The general notion of distribution.
$5^{\text {th }}$ week
Expectation, variance and median. Uniform, exponential, normal distributions.
$6^{\text {th }}$ week
Joint distribution function and joint probability density function of random variables. Independent random variables, correlation coefficient.

```
7h}\mathrm{ week
Multivariate distributions. Expectation vector and variance matrix of random a random vector.
Independence of random variables.
8th}\mathrm{ week
Multivariate normal distribution, concentration ellipsoid. Sample from normal distribution. Chi-
squared, Student's t, F-distributions.
gh week
Weak law of large numbers. Almost sure convergence, convergence in distribution, convergence
in probability, Lp convergence.
10,th}\mathrm{ week
Kolmogorov's inequality. Kolmogorov's three-series theorem. Strong laws of large numbers.
11 th week
Characteristic function and its properties. Inversion formulas. Continuity theorem
12 th week
Central limit theorem. Law of the iterated logarithm. Arcsine laws.
134
Conditional distribution function, conditional density function, conditional expectation.
144}\mathrm{ week
Comparison of the limit theorems.
Requirements:
- for a grade
Person responsible for course: Prof. Dr. István Fazekas, university professor, DSc
Lecturer: Prof. Dr. István Fazekas, university professor, DSc
```

Title of course: Introduction to informatics

Type of teaching, contact hours

```
- lecture: -
- practice: }3\mathrm{ hours/week
```

- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory:
- home assignment: -
- preparation for the exam: 18 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

An introduction to LaTeX, a document preparation system for high-quality typesetting. Typesetting of complex mathematical formulas in LaTeX. Presentation creation using the Beamer class. Writing a formal or business letter in LaTeX. Using the moderncv class for typesetting curricula vitae. The memoire class, a tool to create BSc/MSc thesis. Introduction to SageMath, a computer algebra package. The Jupyter Notebook interface and the SageMathCloud. Basic tools, assignment, equality, and arithmetic. Boolean expressions, loops, lists and sets. Writing functions in SageMath.

Literature

Compulsory:

Recommended:

T. Oetiker: The Not So Short Introduction to LaTeX.

Gregory Bard: SageMath for Undergraduates (http://www.gregorybard.com/Sage.html)

Schedule:

$1^{s t}$ week
Basic usage of LaTeX. MikTeX and TeXLive distributions. The TeXmaker editor.
$2^{\text {nd }}$ week
Preparing LaTeX documents, basic mathematical formulas in LaTeX .
$3^{\text {rd }}$ week
Complex mathematical formulas, matrices, tables in LaTeX .
$4^{\text {th }}$ week
Presentation in LaTeX, the beamer package and its usage. Special LaTeX commands in presentations.
$5^{\text {th }}$ week
Definitions, theorems in LaTeX, the memoire package and its usage to prepare thesis. The bibtex
package.
$6^{\text {th }}$ week
The moderncv package, curriculum vitae and formal letter in LaTeX.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
The SageMath computer algebra package, basic mathematical usage.
$9^{\text {th }}$ week
Functions related to the rings of integers, computing the gcd and the extended euclidean algorithm.
$10^{\text {th }}$ week
Polynomial rings in SageMath, rational functions and related commands.
$11^{\text {th }}$ week
Sets and lists in SageMath, basic operations, loops in lists and sets.
$12^{\text {th }}$ week
Trigonometric functions in SageMath, expanding and simplifying expressions.
$13^{\text {th }}$ week
Defining functions in SageMath, preparing plots. Solving special equations, systems of equations.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Szabolcs Tengely, associate professor, PhD
Lecturer: Dr. Szabolcs Tengely, associate professor, PhD

Title of course: Programming languages

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
- laboratory: -
```

Evaluation: practice
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 16 hours
- preparation for the exam: 16 hours

Total: 60 hours
Year, semester: $1^{1 \text { st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Brief introduction to programming, programming languages, and architecture in general. Sequential, conditional, and repeated execution, reuse. Values and types, expressions. Container data types and standard uses. Reading and writing files. Text processing with string methods and regular expressions. Object-oriented design in practice. Basics of networked programming, working with data over the internet. Fundamentals of using databases and visualisation of data. Complex programming exercises.

Literature

Compulsory:

Recommended:

Charles Severance, Python for Everybody: Exploring Data in Python 3, 2016.
Allen B. Downey, Think Python, 2012

Schedule:

$I^{s t}$ week

General introduction to programming and programming languages. Simplified structure of programs: sequential, conditional, and repeated execution, reuse. Flowcharts, errors and debugging. About Python.
$2^{\text {nd }}$ week
Values and types, standard types in Python, differences between classes and types. Variables: assignment, naming conventions, and aliasing. Expressions: numerical and Boolean operations, orders of operations, short-circuit evaluation of logical expressions.
$3^{\text {rd }}$ week
Blocks and indentation in Python. Conditional execution: single conditionals, alternative executions, chained and nested conditionals, try and except. Repeated execution: definite loops, the range type, indefinite loops, infinite loops, and loop controls.
$4^{\text {th }}$ week

Functions: function calls, arguments and parameters, built-in and user-defined functions, fruitful and void functions, modules.
$5^{\text {th }}$ week
Classification of container data types: iterable, mutable, and ordered types. Strings, lists, tuples, sets, and dictionaries and their basic roles.
$6^{\text {th }}$ week
Files: open and close, read and write, creating new files and directories. Parsing strings with string methods.
$7^{\text {th }}$ week
Regular expressions as a formal language and as strings with standard and meta characters. Parsing strings with regular expression methods.
$8^{\text {th }}$ week
Object-oriented design: goals, principles, and patterns. Instances and methods: accessor, mutator, and manager methods. Classes in Python.
$9^{\text {th }}$ week
Networked programming: a brief introduction to HTML, XML, and JSON. Retrieving and processing content over the internet.
$10^{\text {th }}$ week
Networked programming continued.
$11^{\text {th }}$ week
Databases: a brief introduction to databases and SQL. Reading, writing, and processing data from databases.
$12^{\text {th }}$ week
Visualization of data.
$13^{\text {th }}$ week
Extensive programming class.
$14^{\text {th }}$ week
Final exam.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of one written test and a homework project submitted during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the test is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.

Person responsible for course: Dr. András Bazsó, assistant professor, PhD
Lecturer: Dr. András Bazsó, assistant professor, PhD

Title of course: Algorithms

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0107
Further courses built on it: -

Topics of course

Classification of programming languages. Multi-character symbols. Data types. Instruction types. Loops. Subprograms. The role of algorithms in computing. Functions, recursive functions. Probabilistic analysis. Randomized algorithms. Heap, heapsort. Quicksort. Sorting in linear time. Elementary data structures.

Literature

Compulsory:

Recommended:

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, MIT Press, Cambridge, 2009 (3rd ed.)
István Juhász: Programming Languages.,
http://www.tankonyvtar.hu/en/tartalom/tamop425/0046_programming_languages/index.html

Schedule:

$I^{\text {st }}$ week
Introduction, foundations. Classification of programming languages.
$2^{\text {nd }}$ week
Multi-character symbols, symbolic names, labels, comments, literals, (constants.) Data types (simple, composite and pointer types).
$3^{\text {rd }}$ week
Assignment statements, the empty statements, the GOTO statement, selection statements, conditional statements, case/switch statement.
$4^{\text {th }}$ week
Loop statements, conditional loops, count-controlled loops, enumeration-controlled loops, infinite loops, composite loops.
$5^{\text {th }}$ week

Subprograms, the call chain and recursion, secondary entry points, parameter evaluation and parameter passing, block, scope, compilation unit.
$6^{\text {th }}$ week
The role of algorithms in computing. Algorithms as a technology, insertion sort, analyzing algorithms, designing algorithms.
$7^{\text {th }}$ week
Functions, recursive functions. Grow of functions, asymptotic notation, standard notations and common functions. Recurrences, the substitution method and the recursion-tree method for solving recurrences.
$8^{\text {th }}$ week
The master method and proof of the master method.
$9^{\text {th }}$ week
Probabilistic analysis, the hiring problem, indicator random variables.
$10^{\text {th }}$ week
Randomized algorithms and further examples of probabilistic analysis.
$11^{\text {th }}$ week
Heap, heapsort, maintaining the heap property, building the heap, the heapsort algorithm, priority queues.
$12^{\text {th }}$ week
Quicksort, description of quicksort, performance of quicksort, a randomized version of quicksort, analysis of quicksort.
$13^{\text {th }}$ week
Sorting in linear time, lower bounds for sorting, counting sort, radix sort, bucket sort.
$14^{\text {th }}$ week
Elementary data structures, stacks and queues, linked lists, implementing pointers and objects, representing rooted trees.

Requirements:

- for a signature

If the student fail the course TTMBG0606, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

-an offered grade:

It is possible to obtain an offered grade on the basis of two written test during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	$\operatorname{good}(4)$

$86-100$	excellent (5)
Person responsible for course: Dr. Nóra Györkös-Varga, assistant professor, PhD	
Lecturer: Dr. Nóra Györkös-Varga, assistant professor, PhD	

Title of course: Algorithms

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: practice

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0107
Further courses built on it: -

Topics of course

Classification of programming languages. Multi-character symbols. Data types. Instruction types. Cycles. Subprograms. The role of algorithms in computing. Functions, recursive functions. Probabilistic analysis. Randomized algorithms. Heap, heapsort. Quicksort. Sorting in linear time. Elementary data structures.

Literature

Compulsory:

Recommended:

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, MIT Press, Cambridge, 2009 (3rd ed.)
István Juhász: Programming Languages., http://www.tankonyvtar.hu/en/tartalom/tamop425/0046_programming_languages/index.html

Schedule:

$I^{\text {st }}$ week

Presentation of procedural and object-oriented languages, emphasizing the main differences and presentation of structures, parts of methods.
$2^{\text {nd }}$ week
Presentation of data types (simple, composite and special), emphasizing the main differences of the types static and dynamic. Using the simpler and known data types (array, chain, list, structure), their creation from simple types.
$3^{\text {rd }}$ week
Description of main types of statements, the difference of selection statements. Representing conditional statements (if-else) and case/switch statement (if-else if, or switch); presentation of the differences of ,if-else if" and ,"switch" in case/switch statement. Recapitulate and exercise of notations and logical foundations required for conditional statements.
$4^{\text {th }}$ week

Loop statements, conditional loops, count-controlled loops, enumeration-controlled loops, infinite loops, composite loops. Programming loops „while" and „do-while", investigation of effect of different initialization and termination conditions concerning certain problems.
$5^{\text {th }}$ week
Functions, planning of methods, determination of return values. Connection, linking of functions and methods. Presentation of recursive functions through some examples (e.g. Fibonacci sequence). Simultaneous determination of different return values with indicators.
$6^{\text {th }}$ week
The role of algorithms in computing. Algorithms as a technology, insertion sort, bubble sort, analyzing algorithms, designing algorithms. Presentation and examination of different types of the (above) sorts with reference to efficiency.
$7^{\text {th }}$ week
Grow of functions, asymptotic notation, standard notations and common functions. Recurrences, the substitution method and the recursion-tree method for solving recurrences.
$8^{\text {th }}$ week
The master method, practical importance of the master method.
$9^{\text {th }}$ week
Probabilistic analysis, the hiring problem, indicator random variables.
$10^{\text {th }}$ week
Randomized algorithms and further examples of probabilistic analysis.
$11^{\text {th }}$ week
Heap, heapsort, maintaining the heap property, building the heap, the heapsort algorithm, priority queues.
$12^{\text {th }}$ week
Quicksort, description of quicksort, performance of quicksort, a randomized version of quicksort, analysis of quicksort.
$13^{\text {th }}$ week
Sorting in linear time, lower bounds for sorting; programming the counting sort, radix sort, bucket sort. Presentation of foundation of Hash functions and using them for sort of certain array.
$14^{\text {th }}$ week
Elementary data structures, stacks and queues, linked lists, implementing pointers and objects, representing rooted trees.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the test is possible. -an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Nóra Györkös-Varga, assistant professor, PhD
Lecturer: Dr. Nóra Györkös-Varga, assistant professor, PhD

Title of course: Applied number theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0106
Further courses built on it: TTMBE0111

Topics of course

Basic notions of complexity theory. Some basic algorithms and their complexity. Approximation of real numbers by rationals, the theorem of Dirichlet. Liouville's theorem, a construction of transcendental numbers. Continued fractions and their properties. Finite and infinite continued fractions. Approximation with continued fractions. The LLL-algorithm and some of its applications. Pseudoprimes and their properties. Carmichael-numbers and their role in probabilistic prime tests. Euler-pseudoprimes and their properties. The Soloway-Strassen probabilistic prime test. Strong pseudoprimes and their properties. The Miller-Rabin probabilistic prime test. Deterministic prime tests, Wilson's theorem, the description of the Agrawal-KayalSaxena test. The birthday paradox and Pollard's ρ-method. Fermat-factorization. Factorization with a factor basis. Factorization with continued fractions.

Literature

Compulsory:

Recommended:

Neal Koblitz: A Course in Number Theory and Cryptography, Springer Verlag, 1994.
I. Niven, H. S. Zuckerman, H. L. Montgomery: An Introduction to the Theory of Numbers, Wiley, 1991.

Nigel Smart: The Algorithmic Resolution of Diophantine Equations, London Mathematical Society Student Text 41, Cambridge University Press, 1998.

Schedule:

$l^{s t}$ week
Basic concepts of complexity theory. Some fundamental algorithms and their complexity. Solution of related problems.
$2^{\text {nd }}$ week
Approximation of real numbers by rationals, Dirichlet's theorem. Solution of related problems.
$3^{\text {rd }}$ week

Liouville's theorem, construction of transcendental numbers. Solution of related problems.
$4^{\text {th }}$ week
Continued fractions and their properties. Finite and infinite continued fractions. Solution of related problems.
$5^{\text {th }}$ week
Approximation by continued fractions. Solution of related problems.
$6^{\text {th }}$ week
The LLL-algorithm and some of its applications. Solution of related problems.
$7^{\text {th }}$ week
Pseudoprimes and their properties. Carmichael-numbers and their role in probabilistic prime tests.
Solution of related problems.
$8^{\text {th }}$ week
Euler-pseudoprimes and their properties. The Soloway-Strassen probabilistic prime test. Solution of related problems.
$9^{\text {th }}$ week
Strong pseudoprimes and their properties. The Miller-Rabin probabilistic prime test. Solution of related problems.
$10^{\text {th }}$ week
Deterministic prime tests, Wilson's theorem, the Agrawal-Kayal-Saxena test. Solution of related problems.
$11^{\text {th }}$ week
The birthday paradox and Pollard's- ρ-method. Solution of related problems.
$12^{\text {th }}$ week
Fermat-factorization. The background of the method and its variants. Solution of related problems.
$13^{\text {th }}$ week
Factorization with a factor basis.. Solution of related problems.
$14^{\text {th }}$ week
Continued fraction factorization. The background of the method and its applications. Solution of related problems.

Requirements:

- for a signature

Signature is not a basis of evaluation in this course.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Lajos Hajdu, university professor, DSc
Lecturer: Prof. Dr. Lajos Hajdu, university professor, DSc

Title of course: Algorithms in algebra and number theory

ECTS Credit points: 3

 Code: TTMBG0110Type of teaching, contact hours

- lecture: -
- practice: 3 hours/week
- laboratory: -

Evaluation: practice

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory: -
- home assignment: -
- preparation for the exam: 48 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0106

Further courses built on it: -

Topics of course

Linear algebra and applications using SageMath. Factoring polynomials over finite fields, the Berlekamp algorithm. Shamir's secret sharing algorithm. Lattices, the LLL-algorithm and applications. Number theoretic functions in SageMath. Linear Diophantine equations, the Frobenious problem. Conics and elliptic curves in SageMath.

Literature

Compulsory:

Recommended:

Victor Shoup: A Computational Introduction to Number Theory and Algebra, Cambridge University Press, 2005.
William Stein: Elementary Number Theory: Primes, Congruences, and Secrets, Springer-Verlag, 2008

Schedule:

$I^{s t}$ week
A short introduction of SageMath (basic structures, lists, sets, programming tools).
$2^{\text {nd }}$ week
Linear algebra over the reals, complex numbers and finite fields. The Berlekamp algorithm.
Computing formulas for recurrence sequences.
$3^{\text {rd }}$ week
Polynomials and matrices over finite fields, the Samir secret sharing procedure.
$4^{\text {th }}$ week
The NTRU cryptosystem and its implementation in SageMath.
$5^{\text {th }}$ week
Polinomial equations and applications.
$6^{\text {th }}$ week
Number theoretical functions in SageMath, linear Diophantine equations. Combinatorial
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Lattices and the LLL-algorithm in SageMath. The knapsack problem.
$9^{\text {th }}$ week
The Frobenius problem. Solutions of the Frobenius problem via Wilf-method and Brauer-method.
$10^{\text {th }}$ week
Computations related to quadratic residues, the Legendre symbol.
$11^{\text {th }}$ week
The ternary Diophantine equation $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=0$. Descent algorithm to determine integral solutions, parametrization of rational and integral points.
$12^{\text {th }}$ week
Elliptic curves, points on elliptic curves over the rationals, finite fields. Applications of elliptic curves.
$13^{\text {th }}$ week
Points on elliptic curves over finite fields, determining the order, the baby step-giant step algorithm.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$91-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Szabolcs Tengely, associate professor, PhD
Lecturer: Dr. Szabolcs Tengely, associate professor, PhD

Title of course: Introduction to cryptography

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $3^{\text {rd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0109
Further courses built on it: -

Topics of course

Basic cryptographic concepts. Symmetric and asymmetric cryptosystems. The Cesar and the linear cryptosystems, DES, AES. The RSA cryptosystem and the analysis of its security. The discrete logarithm problem. Algorithms for solving the discrete logarithm problem. Cryptosystems based on the discrete logarithm problem. Elliptic curve cryptography. Basic cryptographic protocols. Digital signature. The basics of PGP.

Literature

Compulsory:

-

Recommended:

J. Buchmann: Einführung in die Kryptographie, Springer, 1999.
N. Koblitz: A Course in Number Theory and Cryptography, Springer, 1987.

Schedule:

$I^{s t}$ week

The models of information transfer. The Shannon model, modulator, demodulator and their parts. The two branches of cryptology: cryptography and cryptanalysis. Major applications of cryptography. Requirements of a modern cryptosystem. The notion of cryptosystem and its mathematical model.
$2^{\text {nd }}$ week
Classical cryptosystems. Symmetric versus asymmetric cryptosystems. The Caesar cryptosystem, substitution ciphers, the affine cryptosystem. Frequency analysis. Breaking the classical cryptosystems.
$3^{\text {rd }}$ week
Block-cyphers. Feistel-type ciphers. The history of the DES, requirements for a cryptosystem in those times. Description of the DES. Security of the DES. Double DES and triple DES.
$4^{\text {th }}$ week

The field $\operatorname{GF}\left(2^{\wedge} 8\right)$. Operations in $\operatorname{GF}\left(2^{\wedge} 8\right)$. Bytes as elements of $\mathrm{GF}\left(2^{\wedge} 8\right)$. The structure of the polynomial ring $\mathrm{GF}\left(2^{\wedge} 8\right)[\mathrm{x}]$ and of the factor ring $\mathrm{GF}\left(2^{\wedge} 8\right)[\mathrm{x}] /\left(\mathrm{x}^{\wedge} 4+1\right)$, operations in the factor ring $\mathrm{GF}\left(2^{\wedge} 8\right)[\mathrm{x}] /\left(\mathrm{x}^{\wedge} 4+1\right)$.
$5^{\text {th }}$ week
The call for proposals for AES. Requirements concerning AES. The winner of the call: the Rijndael. Description of the Rijndael cryptosystem: number of rounds, round-transformation final round, round-key generation.
$6^{\text {th }}$ week
The basic idea behind the public-key cryptosystems, the infrastructure of public key cryptosystems. The idea behind the RSA cryptosystem. Description of the RSA cipher.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
The security of the RSA - correct choice of the parameters. Known protocol errors and possibilities of attacking the RSA in case of wrong parametrization or programming.
$9^{\text {th }}$ week
The discrete logarithm problem. The Pohlig-Hellman algorithm, the Baby-step Giant-step algorithm, the Pollard-rho algorithm, and the Index-calculus algorithm.
$10^{\text {th }}$ week
Public-key cryptosystems based on the hardness of the discrete logarithm problem: the El Gamal cryptosystem, the Diffie-Hellmann key-exchange protocol, the Massey-Omura cryptosystem.
$11^{\text {th }}$ week
Definition of elliptic curves. Points on elliptic curves over a given field. Definition of the group of an elliptic curve. The real case. Elliptic curves over finite fields. Hasse's theorem.
$12^{\text {th }}$ week
Encoding the plaintext as a point of an elliptic curve. Cryptosystems based on the discrete logarithm problem over elliptic curves: the El Gamal cryptosystem, the Massey-Omura cryptosystem.
$13^{\text {th }}$ week
Protocols for key-exchange, digital signature and authentication. Zero-knowledge proofs.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

If the student fail the course TTMBG0111, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

-an offered grade:
It is possible to obtain an offered grade on the basis of two written test during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

Person responsible for course: Prof. Dr. Attila Bérczes, university professor, DSc
Lecturer: Prof. Dr. Attila Bérczes, university professor, DSc

Title of course: Introduction to cryptography

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 16 hours
- preparation for the exam: 16 hours

Total: 60 hours
Year, semester: $3^{\text {rd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0109
Further courses built on it: -

Topics of course

Basic cryptographic concepts. Symmetric and asymmetric cryptosystems. The Cesar and the linear cryptosystems, DES, AES. The RSA cryptosystem and the analysis of its security. The discrete logarithm problem. Algorithms for solving the discrete logarithm problem. Cryptosystems based on the discrete logarithm problem. Elliptic curve cryptography. Basic cryptographic protocols. Digital signature. The basics of PGP.

Literature

Compulsory:

-

Recommended:

J. Buchmann: Einführung in die Kryptographie, Springer, 1999.
N. Koblitz: A Course in Number Theory and Cryptography, Springer, 1987.

Schedule:

$I^{\text {st }}$ week
Introduction to the Magma computer algebra system.
$2^{\text {nd }}$ week
Realization of the Caesar cryptosystem, a substitution cypher, or an affine cryptosystem.
$3^{\text {rd }}$ week
Programming the DES in frame of group work.
$4^{\text {th }}$ week
Continuing the implementation of DES. Combining the individually produced programme-parts.
$5^{\text {th }}$ week
Computer aided computations in the field $\operatorname{GF}\left(2^{\wedge} 8\right)$, the polynomial ring $\operatorname{GF}\left(2^{\wedge} 8\right)[x]$ and the factor ring $\mathrm{GF}\left(2^{\wedge} 8\right)[\mathrm{x}] /\left(\mathrm{x}^{\wedge} 4+1\right)$ using Magma.
$6^{\text {th }}$ week

Group work: programming the encryption/decryption function of the Rijndael cryptosystem.
$7^{\text {h }}$ week
Continuing the implementation of the Rijndael cryptosystem. Combining the individually produced programme-parts.
$8^{\text {th }}$ week
Implementing the RSA cryptosystem.
$9^{\text {th }}$ week
Programming one of the algorithms for solving the DLP.
$10^{\text {th }}$ week
Implementing one of the cryptosystems based on the hardness of the DLP.
$11^{\text {th }}$ week
Defining and manipulating elliptic curves in Magma.
$12^{\text {th }}$ week
Writing a programme to encode plaintext as a point on an elliptic curve.
$13^{\text {th }}$ week
Implementing the Diffie-Hellmann key-exchange protocol.
$14^{\text {th }}$ week
Evaluation, decision of the marks of the students.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of one written test and a homework project submitted during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the test is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Attila Bérczes, university professor, DSc
Lecturer: Prof. Dr. Attila Bérczes, university professor, DSc

Title of course: Numerical analysis
 Code: TTMBE0209

Type of teaching, contact hours

- lecture: 3 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 42 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 78 hours

Total: 120 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0102, TTMBE0215, TTMBG0209(p)
Further courses built on it: -

Topics of course

Features of computions by computer, error propagation. Some important matrix transformations for solving linear systems and eigenvalue problems. Gaussian elimination and its variants: its algorithms, operational complexity, pivoting. Decompositions of matrices: Schur complement, LU decomposition, LDU decomposition, Cholesky decomposition, QR decomposition. Iterative methods for solving linear and nonlinear systems: Gauss-Seidel iteration, gradient method, conjugate gradient method, Newton method, local and global convergence, quasi-Newton method, Levenberg-Marquardt algorithm, Broyden method. Solving eigenvalue problems: power method, inverse iteration, translation, QR method. Interpolation and approximation problems: Lagrange and Hermite interpolation, spline interpolation, Chebyshev-approximation. Quadrature rules: Newton-Cotes formulas, Gauss quadrature. Numerical methods for ordinary differential equations: Euler method, Runge-Kutta methods, finite-difference methods, finite element method.

Literature

Compulsory:

Recommended:

- Atkinson, K.E.: Elementary Numerical Analysis. John Wiley, New York, 1993.
- Lange, K.: Numerical analysis for statisticians. Springer, New York, 1999.
- Press, W.H. - Flannery, B.P. - Tenkolsky, S.A. - Vetterling, W.T.: Numerical recipes in C. Cambridge University Press, Cambridge, 1988.
- Engeln-Mullgens, G. - Uhling, F.: Numerical algorithms with C. Springer, Berlin, 1996.

Schedule:

$1^{\text {st }}$ week Features of computions by computer, error propagation. Some important matrix transformations for solving linear systems and eigenvalue problems.
$2^{\text {nd }}$ week Solution of system of linear equations: Gaussian elimination and its variants
$3^{r d}$ week Algorithms of the Gauss elimination and its operational comlexity. Pivoting.
$4^{\text {th }}$ week Decompositions of matrices: Schur complement, LU decomposition, LDU decomposition, Cholesky factorisation, QR factorisation of matrices.
$5^{\text {th }}$ week Iterative methods for solving linear systems: Gauss-Seidel iteration and its convergence $6^{\text {th }}$ week Preconditioning. The gradient method and the conjugate gradient method
$7^{\text {th }}$ week Approximate solution of nonlinear equations: Newton method, local and global convergence, quasi-Newton method, Levenberg-Marquardt algorithm, Broyden-method $8^{\text {th }}$ week Numerical methods for solving eigenvalue problems: power method and inverse iteration $9^{\text {th }}$ week Numerical methods for solving eigenvalue problems: shift method, the QR algorithm $10^{\text {th }}$ week Interpolation and approximation problems: Lagrange-interpolation, Hermiteinterpolation. Spline interpolation. Error of the approximation. Tschebisev-approximation
$11^{\text {th }}$ week Numerical integration: Newton-Cotes formulas. Composite quadrature formulas
$12^{\text {th }}$ week Gauss quadrature. Existence, convergence, error estimation
$13^{\text {th }}$ week Numerical methods for solving initial value problems of ordinary differential equations: Euler method, Runge-Kutta method
$14^{\text {th }}$ week Numerical methods for solving boundary value problems of ordinary differential equations: finite difference methods, finite element method

Requirements:

- for a grade

The course ends in an examination. The minimum requirement for the examination is 50\%. Based on the score of the exam the grade for the examination is given according to the following table

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-89$	good (4)
$90-100$	excellent (5)

Person responsible for course: Dr. Borbála Fazekas, associate professor, PhD
Lecturer: Dr. Borbála Fazekas, associate professor, PhD

Title of course: Numerical analysis
 Code: TTMBG0209
 ECTS Credit points: 2

Type of teaching, contact hours

- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: practical

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the tests: 32 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMBE0102, TTMBE0215
Further courses built on it:-

Topics of course

Features of computions by computer, error propagation. Some important matrix transformations for solving linear systems and eigenvalue problems. Gaussian elimination and its variants: its algorithms, operational complexity, pivoting. Decompositions of matrices: Schur complement, LU decomposition, LDU decomposition, Cholesky decomposition, QR decomposition. Iterative methods for solving linear and nonlinear systems: Gauss-Seidel iteration, gradient method, conjugate gradient method, Newton method, local and global convergence, quasi-Newton method, Levenberg-Marquardt algorithm, Broyden method. Solving eigenvalue problems: power method, inverse iteration, translation, QR method. Interpolation and approximation problems: Lagrange and Hermite interpolation, spline interpolation, Chebyshev-approximation. Quadrature rules: Newton-Cotes formulas, Gauss quadrature. Numerical methods for solving ordinary differential equations: Euler method, Runge-Kutta methods, finite-difference methods, finite element method.

Literature

Compulsory:

Recommended:

- Atkinson, K.E.: Elementary Numerical Analysis. John Wiley, New York, 1993.
- Lange, K.: Numerical analysis for statisticians. Springer, New York, 1999.
- Press, W.H. - Flannery, B.P. - Tenkolsky, S.A. - Vetterling, W.T.: Numerical recipes in C. Cambridge University Press, Cambridge, 1988.
- Engeln-Mullgens, G. - Uhling, F.: Numerical algorithms with C. Springer, Berlin, 1996.

Schedule:

$I^{s t}$ week Features of computions by computer, error propagation. Some important matrix transformations for solving linear systems and eigenvalue problems. Solution of system of linear equations: Gaussian elimination and its variants
$2^{\text {nd }}$ week Algorithms of the Gauss elimination and its operational complexity. Pivoting.
$3^{r d}$ week Decompositions of matrices: Schur complement, LU decomposition, LDU decomposition, Cholesky factorisation, QR factorisation of matrices
$4^{\text {th }}$ week Iterative methods for solving linear systems: Gauss-Seidel iteration and its convergence $5^{\text {th }}$ week Preconditioning. The gradient method and the conjugate gradient method
$6^{\text {th }}$ week Approximate solution of nonlinear equations: Newton method, local and global
convergence, quasi-Newton method, Levenberg-Marquardt algorithm, Broyden-method
$7^{\text {th }}$ week Test
$8^{\text {th }}$ week Numerical methods for solving eigenvalue problems: power method and inverse iteration. Shift method, the QR algorithm
$9^{\text {th }}$ week Interpolation and approximation problems: Lagrange-interpolation, Hermiteinterpolation. Spline interpolation. Error of the approximation. Tschebisev-approximation
$10^{\text {th }}$ week Numerical integration: Newton-Cotes formulas. Composite quadrature formulas
$11^{\text {th }}$ week Gauss quadrature. Existence, convergence, error estimation
$12^{\text {th }}$ week Numerical methods for solving initial value problems of ordinary differential equations: Euler method, Runge-Kutta method
$13^{\text {th }}$ week Numerical methods for solving boundary value problems of ordinary differential equations: finite difference methods, finite element method
$14^{\text {th }}$ week Test

Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
During the semester there are two tests: one test in the $7^{\text {th }}$ week and the other test in the $14^{\text {th }}$ week. The minimum requirement for the tests respectively is 50%. Based on the score of the tests, the grade for the tests is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-89$	good (4)
$90-100$	excellent (5)

If the score of any test is below 50 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Borbála Fazekas, associate professor, PhD
Lecturer: Dr. Borbála Fazekas, associate professor, PhD

Title of course: Economic mathematics

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $3^{\text {rd }}$ year, 1 st semester
Its prerequisite(s): TTMBE0211
Further courses built on it:-

Topics of course

Computation of future and present values, discounted present value and investment projects. Bounds for the budget, change of the budget line, consumer preferences, preference order. Indifference curves, marginal rate of substitution, utility, utility functions, Cobb-Douglas preferences, marginal utility. Optimal choice, consumer demand, demand curves, inverse demand curve, market demand, elasticity. Demands of constant elasticity, elasticity and marginal revenue, marginal revenue curves, income elasticity. Production functions, marginal rate of substitution. CES property, Cobb-Douglas type production function and its properties, Arrow-Chenery-Minhas-Solow type production function. Equilibrium points of two-person games, the best response mapping, game theoretic model of Bertrand and Cournot type duopoly. Individual and social preferences, social welfare function. Arrow's impossibility theorem. Consistent aggregation, bisymmetry equation. Influencing the distribution of incomes, the discounted present value of continuous income stream, Lorenz curve, Gini coefficient. Leontieff models.

Literature

Compulsory:
Recommended:

- M. Carter: Foundations of Mathematical Economics, MIT Press, 2001.
- K. Sydsaeter, P. Hammond, Mathematics for Economic Analysis, Pearson Publishing, 1995.
- H. R. Varian: Intermediate Microeconomics: A Modern Approach, W.W. Norton, 1987.

Schedule:

$1^{s t}$ week
Computation of future and present values, discounted present value and investment projects.
$2^{\text {nd }}$ week
Bounds for the budget, change of the budget line, consumer preferences, preference order.
$3^{\text {rd }}$ week
Indifference curves, marginal rate of substitution, utility, utility functions, Cobb-Douglas preferences, marginal utility.
$4^{\text {th }}$ week
Optimal choice, consumer demand, demand curves, inverse demand curve, market demand, elasticity.
$5^{\text {th }}$ week
Demands of constant elasticity, elasticity and marginal revenue, marginal revenue curves, income elasticity.
$6^{\text {th }}$ week
Production functions, marginal rate of substitution.
$7^{\text {th }}$ week
CES property, Cobb-Douglas type production function and its properties, Arrow-Chenery-Minhas-Solow type production function.
$8^{\text {th }}$ week
Equilibrium points of two-person games, the best response mapping, game theoretic model of Bertrand and Cournot type duopoly.
$9^{\text {th }}$ week
Individual and social preferences, social welfare function.
$10^{\text {th }}$ week
Arrow's impossibility theorem.
$11^{\text {th }}$ week
Consistent aggregation, bisymmetry equation.
$12^{\text {th }}$ week
Influencing the distribution of incomes, the discounted present value of continuous income stream,
$13^{\text {th }}$ week
Lorenz curve, Gini coefficient.
$14^{\text {th }}$ week
Leontieff models.

Requirements:

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an examination. The minimum requirement for the examination is 50%. Based on the score of the exam the grade for the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-76$	satisfactory (3)
$77-88$	good (4)
$89-100$	excellent (5)

Person responsible for course: Dr. Fruzsina Mészáros, assistant professor, PhD
Lecturer: Dr. Fruzsina Mészáros, assistant professor, PhD

Title of course: Economic mathematics

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
- laboratory: -
Evaluation: practical
Workload (estimated), divided into contact hours:
- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the tests: 32 hours
Total: 60 hours
Year, semester: \(3^{\text {rd }}\) year, 1 st semester
Its prerequisite(s): TTMBE0211
Further courses built on it:-
```


Topics of course

Computation of future and present values, discounted present value and investment projects. Bounds for the budget, change of the budget line, consumer preferences, preference order. Indifference curves, marginal rate of substitution, utility, utility functions, Cobb-Douglas preferences, marginal utility. Optimal choice, consumer demand, demand curves, inverse demand curve, market demand, elasticity. Demands of constant elasticity, elasticity and marginal revenue, marginal revenue curves, income elasticity. Production functions, marginal rate of substitution. CES property, Cobb-Douglas type production function and its properties, Arrow-Chenery-Minhas-Solow type production function. Equilibrium points of two-person games, the best response mapping, game theoretic model of Bertrand and Cournot type duopoly. Individual and social preferences, social welfare function. Arrow's impossibility theorem. Consistent aggregation, bisymmetry equation. Influencing the distribution of incomes, the discounted present value of continuous income stream, Lorenz curve, Gini coefficient. Leontieff models.

Literature

Compulsory:
Recommended:

- M. Carter: Foundations of Mathematical Economics, MIT Press, 2001.
- K. Sydsaeter, P. Hammond, Mathematics for Economic Analysis, Pearson Publishing, 1995.
- H. R. Varian: Intermediate Microeconomics: A Modern Approach, W.W. Norton, 1987.

Schedule:

$I^{s t}$ week
Computation of future and present values, discounted present value and investment projects.
$2^{\text {nd }}$ week
Bounds for the budget, change of the budget line, consumer preferences, preference order.
$3^{\text {rd }}$ week

Indifference curves, marginal rate of substitution, utility, utility functions, Cobb-Douglas preferences, marginal utility.
$4^{\text {th }}$ week
Optimal choice, consumer demand, demand curves, inverse demand curve, market demand, elasticity.
$5^{\text {th }}$ week
Demands of constant elasticity, elasticity and marginal revenue, marginal revenue curves, income elasticity.
$6^{\text {th }}$ week
Production functions, marginal rate of substitution.
$7^{\text {th }}$ week
CES property, Cobb-Douglas type production function and its properties, Arrow-Chenery-Minhas-Solow type production function.
$8^{\text {th }}$ week
Equilibrium points of two-person games, the best response mapping, game theoretic model of Bertrand and Cournot type duopoly.
$9^{\text {th }}$ week
Individual and social preferences, social welfare function.
$10^{\text {th }}$ week
Arrow's impossibility theorem.
$11^{\text {th }}$ week
Consistent aggregation, bisymmetry equation.
$12^{\text {th }}$ week
Influencing the distribution of incomes, the discounted present value of continuous income stream,
$13^{\text {th }}$ week
Lorenz curve, Gini coefficient.
$14^{\text {th }}$ week
Leontieff models.

Requirements:

- for a practical

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
During the semester there are two tests: one test in the $7^{\text {th }}$ week and the other test in the $14^{\text {th }}$ week. The minimum requirement for the tests respectively is 50%. Based on the score of the tests, the grade for the tests is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-76$	satisfactory (3)
$77-88$	good (4)

If the score of any test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Fruzsina Mészáros, assistant professor, PhD
Lecturer: Dr. Fruzsina Mészáros, assistant professor, PhD

```
Title of course: Analysis with computer
Code: TTMBG0210
Type of teaching, contact hours
- lecture: -
- practice: -
- laboratory: 3 hours/week
Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:
    - lecture: -
    - practice: -
    - laboratory: 42 hours
    - home assignment: -
    - preparation for the test: 78 hours
Total: 120 hours
Year, semester: 3 'd year, 2 nd semester
Its prerequisite(s): TTMBE0215
Further courses built on it: -
```

ECTS Credit points: 4

Topics of course

The Maple; types of data, simple for-cycles, defining functions. Examination of functions; continuity, limit, zeros, extrema, constrained extrema. Differentiation, integration and numerical integration. Programming of simple quadrature rules. Solving differential equations with analytic methods and visualizing the solutions. Solving differential equations with numerical methods, programming Runge-Kutta fomulas. Ways of defining vectors and matrces. Vector and matrix operations, decompositions of matrices. Solving linear systems of equations with direct and iterative methods. Graphic tools in two dimension: making figures, rotation, reflection, parametrized curves. Graphic tools in three dimension: functions of two variables, space curves, surfaces, solid figures. Making animations, illustrating geometric and physical problems. Curve fitting; Lagrange and Hermite interpolation, Bezier curves and spline interpolation. For-cycle and while-cycle, conditional branches. Writing simple procedures: searching for primes, recursive functions, divisibility problems. Writing complex procedures: numerical differentiation and integration, approximation of functions, orthogonal polynomials and differential equations.

Literature

Compulsory: -

Recommended:

- W. Gander, J. Hrebicek: Solving Problems in Scientific Computing Using Maple and MATLAB. Springer-Verlag, Berlin, Heidelberg, New York, 1993, 1995.

Schedule:

$I^{\text {st }}$ week Introduction. Data types of Maple: simple data types, complex data types.
$2^{\text {nd }}$ week Simple for-cycles. Defining functions. Examination of functions; continuity, limit, zeros, extrema, constrained extrema.
$3^{r d}$ week Differentiation, integration and numerical integration. Programming of simple quadrature rules.
$4^{\text {th }}$ week Solving differential equations with analytic methods and visualizing the solutions. Solving differential equations with numerical methods, programming simple Runge-Kutta fomulas.
$5^{\text {th }}$ week Ways of defining vectors and matrces. Vector and matrix operations, decompositions of matrices.
$\sigma^{\text {th }}$ week Solving linear systems of equations with direct and iterative methods. Programming of simple iterative methods.
$7^{\text {th }}$ week Graphic tools in two dimension: making figures, rotation, reflection, parametrized curves. $8^{\text {th }}$ week Graphic tools in three dimension: functions of two variables, space curves, surfaces, solid figures.
$9^{\text {th }}$ week Making animations, illustrating geometric and physical problems.
$10^{\text {th }}$ week Curve fitting; Lagrange and Hermite interpolation, Bezier curves and spline interpolation.
$11^{\text {th }}$ week For-cycle and while-cycle, conditional branches.
$12^{\text {th }}$ week Writing simple procedures: sequences, Taylor-series, extrema of functions.
$13^{\text {th }}$ week Writing complex procedures: numerical differentiation and integration, approximation of functions, orthogonal polynomials and differential equations.
$14^{\text {th }}$ week Test

Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
During the semester there is one test in the $14^{\text {th }}$ week.
The minimum requirement for the test is 50%. Based on the score of the test, the grade for the test is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-89$	good (4)
$90-100$	excellent (5)

If the score of the test is below 50 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
Person responsible for course: Dr. Borbála Fazekas, assistant professor, PhD
Lecturer: Dr. Borbála Fazekas, assistant professor, PhD

Title of course: Computer geometry
Code: TTMBG0308
Type of teaching, contact hours

```
- lecture: -
- practice: 3 hours/week
```

- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory:
- home assignment: -
- preparation for the exam: 48 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMBE0302
Further courses built on it: -

Topics of course

Analytical tools of descriptive geometry: analytical geometry of projections, oblique and orthogonal axonometry, central projection, central axonometry. Curves and surfaces. Hermite, Bézier curves and surfaces, B-splines. Representation of polyhedra.

Literature

Recommended:

- M. K. Agoston. Computer Graphics and Geometric Modeling. Springer-Verlag London Limited, 2005 ISBN 978-1-85233-818-3
- G. Farin. Curves and surfaces for computer-aided geometric design. Morgan Kaufmann, 5th edition, 2002 ISBN 978-1-55860-737-8

Schedule:

$I^{s t}$ week
Basics of computer graphics I.
$2^{\text {nd }}$ week
Basics of computer graphics II.
$3^{\text {rd }}$ week
Realization of affine transformations.
$4^{\text {th }}$ week
Plotting functions of one variable.
$5^{\text {th }}$ week
Plotting curves in the plane.
$6^{\text {th }}$ week
Projections.

```
7h}\mathrm{ week
Representation of convex polyhedra.
8th}\mathrm{ week
Representation of surfaces.
9th}\mathrm{ week
Models of curves, Hermite curves.
10,th}\mathrm{ week
Models of curves, Bézier curves.
11th}\mathrm{ week
Spline interpolation
124h}\mathrm{ week
Models of surfaces, Hermite and Bézier surfaces
134h}\mathrm{ week
B-spline surfaces
14 th week
Representation of fractals
```


Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade

During the semester there are two tests. The minimum requirement for a grade is to get 50% of the total score of the two tests. The grade is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-74$	satisfactory (3)
$75-86$	good (4)
$87-100$	excellent (5)

If the score of any test is below 50 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Ábris Nagy, assistant lecturer, PhD
Lecturer: Dr. Ábris Nagy, assistant lecturer, PhD

Title of course: Linear programming
ECTS Credit points: 3
Code: TTMBE0607
Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, 1st semester
Its prerequisite(s): TTMBE0102
Further courses built on it: -

Topics of course

The subject of linear programming. The simplex algorithm, optimality, degenerateness, unbounded objective function. Cycling and its avoidance; the lexicographic method and the Bland rule. Duality theory: reflexivity, weak and strong duality theorems; the complementary slackness theorem. Sensitivity analysis. Geometric aspects of linear programming. Applications: Carathéodory theorem, Farkas lemma, von Neumann's minimax theorem. Linear programming tasks in models.

Literature

Compulsory:

Recommended:

- Vanderbei, R.: Linear Programming, Foundations and Extensions, Kluwer Academic Publishers, 1998.
- Bertsimas, D.; Tsitsiklis, J.: Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, 6, Athena Scientific, Belmont, 1997.

Schedule:

$I^{s t}$ week
Introduction: Constrained optimization problems; linear programs in standard form; examples.
$2^{\text {nd }}$ week
Terminology; the simplex method.
$3^{\text {rd }}$ week

Unboundedness and degeneracy. Cycling.
$4^{\text {th }}$ week
Perturbation method and the Bland rule. The basic theorem of linear programming.
$5^{\text {th }}$ week
Duality theory: reflexivity and the weak duality theorem.
$6^{\text {th }}$ week
Duality theory: the strong duality theorem; complementary slackness; dual simplex method.
$7^{\text {h }}$ week
Linear programs in matrix form.
$8^{\text {th }}$ week
The primal and dual simplex methods in matrix form.
$9^{\text {th }}$ week
The primal-dual method; sensitivity analysis.
$10^{\text {th }}$ week
Convex geometry in linear programming.
$11^{\text {th }}$ week
Linear programming in convex geometry: Carathéodory theorem and Farkas' lemma.
$12^{\text {th }}$ week
Matrix games.
$13^{\text {th }}$ week
Neumann's minimax theorem.
$14^{\text {th }}$ week
Further examples and applications.

Requirements:

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an examination. The minimum requirement for the examination is 50%. Based on the score of the exam the grade for the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-76$	satisfactory (3)
$77-88$	good (4)
$89-100$	excellent (5)

Person responsible for course: Dr. Fruzsina Mészáros, senior assistant professor, PhD
Lecturer: Dr. Fruzsina Mészáros, senior assistant professor, PhD

Title of course: Linear programming

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the tests: 32 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, 1 st semester
Its prerequisite(s): TTMBE0102

Further courses built on it:-

Topics of course

The subject of linear programming. The simplex algorithm, optimality, degenerateness, unbounded objective function. Cycling and its avoidance; the lexicographic method and the Bland rule. Duality theory: reflexivity, weak and strong duality theorems; the complementary slackness theorem. Sensitivity analysis. Geometric aspects of linear programming. Applications: Carathéodory theorem, Farkas lemma, von Neumann's minimax theorem. Linear programming tasks in models.

Literature

Compulsory:

Recommended:

- Vanderbei, R.: Linear Programming, Foundations and Extensions, Kluwer Academic Publishers, 1998.
- Bertsimas, D.; Tsitsiklis, J.: Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, 6, Athena Scientific, Belmont, 1997.

Schedule:

$I^{s t}$ week
The graphical method.
$2^{\text {nd }}$ week
Simplex algorithm via dictionaries.
$3^{\text {rd }}$ week

Simplex algorithm via dictionaries; discovering unboundedness and degeneracy.
$4^{\text {th }}$ week
Simplex algorithm via dictionaries; perturbation and Bland's rule.
$5^{\text {th }}$ week
Simplex algorithm via simplex tableau.
$6^{\text {th }}$ week
Primal-dual problems; the dual simplex method.
$7^{\text {th }}$ week
Sensitivity analysis.
$8^{\text {th }}$ week
Using computers in linear programming.
$9^{\text {th }}$ week
Using computers in linear programming.
$10^{\text {th }}$ week
Using computers in linear programming.
$11^{\text {th }}$ week
Using computers in linear programming.
$12^{\text {th }}$ week
Matrix games.
$13^{\text {th }}$ week
Modeling.
$14^{\text {th }}$ week
Modeling.

Requirements:

- for a practical

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
During the semester there are two tests: one test in the $7^{\text {th }}$ week and the other test in the $14^{\text {th }}$ week. The minimum requirement for the tests respectively is 50%. Based on the score of the tests, the grade for the tests is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-76$	satisfactory (3)
$77-88$	good (4)
$89-100$	excellent (5)

If the score of any test is below 50 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Fruzsina Mészáros, senior assistant professor, PhD
Lecturer: Dr. Fruzsina Mészáros, senior assistant professor, PhD

Title of course: Basics of mathematics

Type of teaching, contact hours

```
- lecture: -
- practice: 1 hours/week
```

- laboratory: -

Evaluation: signature
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 14 hours
- laboratory:
- home assignment: -
- preparation for the exam: 14 hours

Total: 28 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Algebraic transformations. Solution of different type equations, equation systems, inequalities and inequality systems. Basic notions of trigonometry and coordinate geometry.

Literature

Compulsory:

Recommended:

A. Bérczes and Á. Pintér: College Algebra. University of Debrecen, 2013.
R. D. Gustafson: College algebra and trigonometry. Pacific Grove, Brooks/Cole, 1986.

Schedule:

$I^{s t}$ week
Algebraic transformations, identities, simplification of rational algebraic expressions.
$2^{\text {nd }}$ week
Simplification of irrational algebraic expressions, rationalization of denominator.
$3^{\text {rd }}$ week
Parametric linear equations, equation systems.
$4^{\text {th }}$ week
Quadratic equations, equation systems.
$5^{\text {th }}$ week
Parametric quadratic equations.
$6^{\text {th }}$ week
Sign of linear and quadratic expressions, inequalities, inequality systems (table of signs).
$7^{\text {th }}$ week
Equations containing absolute value.
$8^{\text {th }}$ week

Trigonometry: geometric interpretation of trigonometric functions and basic properties.
$9^{\text {th }}$ week
Identities of sum and difference of angle and trigonometric identities.
$10^{\text {th }}$ week
Trigonometric equations, inequalities. Method of phase shift.
$11^{\text {th }}$ week
Coordinate geometry: lines and circles in a plane, intersectional exercises. Distance of points and of point and line.
$12^{\text {th }}$ week
Lines and circles in the plane, exercises concerning tangent line.
$13^{\text {th }}$ week
Exponential function and its inverse, the logarithm.
$14^{\text {th }}$ week
Exponential and logarithmic equations, inequality.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.
The course is evaluated on the basis of two written tests during the semester. The signature is given if the student obtains at least 60 percent of the total points.
If a student fail to pass at first attempt, then a retake of the tests is possible.

- for a grade

There is no grading in this course.
-an offered grade:
There is no grading in this course.
Person responsible for course: Dr. Nóra Györkös-Varga, assistant professor, PhD
Lecturer: Dr. Nóra Györkös-Varga, assistant professor, PhD

