University of Debrecen
 Faculty of Science and Technology
 Institute of Mathematics

APPLIED MATHEMATICS MSC PROGRAM

TABLE OF CONTENTS

DEAN'S WELCOME 3
UNIVERSITY OF DEBRECEN 4
FACULTY OF SCIENCE AND TECHNOLOGY 5
DEPARTMENTS OF INSTITUTE OF MATHEMATICS 6
ACADEMIC CALENDAR 8
THE APPLIED MATHEMATICS MSC PROGRAM 9
Information about Program 9
Completion of the Academic Program 12
The Credit System 12
Model Curriculum of Applied Mathematics MSc Program 13
Work and Fire Safety Course 15
Physical Education 15
Pre-degree certification 15
Thesis 15
Final Exam 15
Diploma 17
Course Descriptions of Applied Mathematics MSc Program 18

DEAN'S WELCOME

Welcome to the Faculty of Science and Technology!

This is an exciting time for you, and I encourage you to take advantage of all that the Faculty of Science and Technology UD offers you during your bachelor's or master's studies. I hope that your time here will be both academically productive and personally rewarding
Being a regional centre for research, development and innovation, our Faculty has always regarded training highly qualified professionals as a priority. Since the establishment of the Faculty in 1949, we have traditionally been teaching and working in all aspects of Science and have been preparing students for the challenges of teaching. Our internationally renowned research teams guarantee that all students gain a high quality of expertise and knowledge. Students can also take part in research and development work, guided by professors with vast international experience.
While proud of our traditions, we seek continuous improvement, keeping in tune with the challenges of the modern age. To meet the demand of the job market for professionals, we offer engineering courses with a strong scientific basis, thus expanding our training spectrum in the field of technology. Based on the fruitful collaboration with our industrial partners, recently, we successfully introduced dual-track training programmes in our constantly evolving engineering courses.
We are committed to providing our students with valuable knowledge and professional work experience, so that they can enter the job market with competitive degrees. To ensure this, we maintain a close relationship with the most important national and international companies. The basis for our network of industrial relationships are in our off-site departments at various different companies, through which market participants - future employers - are also included in the development and training of our students.

Prof. dr. Ferenc Kun
Dean

UNIVERSITY OF DEBRECEN

Date of foundation: 1912 Hungarian Royal University of Sciences, 2000 University of Debrecen

Legal predecessors: Debrecen University of Agricultural Sciences; Debrecen Medical University; Wargha István College of Education, Hajdúböszörmény; Kossuth Lajos University of Arts and Sciences

Legal status of the University of Debrecen: state university
Founder of the University of Debrecen: Hungarian State Parliament
Supervisory body of the University of Debrecen: Ministry of Education

Number of Faculties at the University of Debrecen: 13
Faculty of Agricultural and Food Sciences and Environmental Management
Faculty of Child and Special Needs Education
Faculty of Dentistry
Faculty of Economics and Business
Faculty of Engineering
Faculty of Health
Faculty of Humanities
Faculty of Informatics
Faculty of Law
Faculty of Medicine
Faculty of Music
Faculty of Pharmacy
Faculty of Science and Technology

Number of students at the University of Debrecen: 29,777
Full time teachers of the University of Debrecen: 1,587
203 full university professors and 1,249 lecturers with a PhD .

FACULTY OF SCIENCE AND TECHNOLOGY

The Faculty of Science and Technology is currently one of the largest faculties of the University of Debrecen with about 2,500 students and more than 200 staff members. The Faculty has got 6 institutes: Institute of Biology and Ecology, Institute of Biotechnology, Institute of Chemistry, Institute of Earth Sciences, Institute of Physics and Institute of Mathematics. The Faculty has a very wide scope of education dominated by science and technology (12 Bachelor programs and 14 Master programs), additionally it has a significant variety of teachers' training programs. Our teaching activities are based on a strong academic and industrial background, where highly qualified teachers with a scientific degree involve student in research and development projects as part of their curriculum. We are proud of our scientific excellence and of the applicationoriented teaching programs with a strong industrial support. The number of international students of our faculty is continuously growing (currently ~ 790 students). The attractiveness of our education is indicated by the popularity of the Faculty in terms of incoming Erasmus students, as well.

THE ORGANIZATIONAL STRUCTURE OF THE FACULTY

Dean: Prof. Dr. Ferenc Kun, Full Professor

E-mail: ttkdekan@science.unideb.hu
Vice Dean for Educational Affairs: Prof. Dr. Gábor Kozma, Full Professor
E-mail: kozma.gabor@science.unideb.hu
Vice Dean for Scientific Affairs: Prof. Dr. Sándor Kéki, Full Professor
E-mail: keki.sandor@science.unideb.hu
Consultant on External Relationships: Prof. Dr. Attila Bérczes, Full Professor
E-mail: berczesa@science.unideb.hu
Consultant on Talent Management Programme: Prof. dr. Tibor Magura, Full Professor
E-mail: magura.tibor@science.unideb.hu
Dean's Office
Head of Dean's Office: Mrs. Katalin Kozma-Tóth
E-mail: toth.katalin@science.unideb.hu
English Program Officer: Mrs. Alexandra Csatáry
Address: 4032 Egyetem tér 1., Chemistry Building, A/101, E-mail: acsatary@science.unideb.hu

DEPARTMENTS OF INSTITUTE OF MATHEMATICS

Department of Algebra and Number Theory (home page:
https://math.unideb.hu/en/introduction-department-algebra-and-number-theory)
4032 Debrecen, Egyetem tér 1, Geomathematics Building

Name	Position	E-mail	room
Prof. Dr. Attila Bérczes	University Professor, Head of Department	berczesa@ @cience.unideb.hu	M415
Prof. Dr. István Gaál	University Professor	gaal.istvan@unideb.hu	M419
Prof. Dr. Lajos Hajdu	University Professor	hajdul@science.unideb.hu	M416
Prof. Dr. Ákos Pintér	University Professor	apinter@science.unideb.hu	M417
Dr. Szabolcs Tengely	Associate Professor	tengely@ science.unideb.hu	M415
Dr. András Bazsó	Assistant Professor	bazsoa@science.unideb.hu	M407
Dr. Gábor Nyul	Assistant Professor	gnyul@science.unideb.hu	M405
Dr. István Pink	Associate Professor	pinki@science.unideb.hu	M405
D. Nóra Györkös- Varga	Assistant Lecturer	nvarga@science.unideb.hu	M417
Dr. Gabriella Rácz	Assistant Lecturer	racz.gabriella@science.unideb.hu	M404
Dr. László Remete	Assistant Lecturer	remete.laszlo@science.unideb.hu	M406
Dr. Eszter Szabó- Gyimesi	Assistant Lecturer	gyimesie@science.unideb.hu	M404
Ms. Tímea Arnćczki	PhD student	arnoczki.timea@science.unideb.hu	M404
Ms. Orsolya Herendi	PhD student	herendi.orsolya@ science.unideb.hu	M407
Mr. Ágoston Papp	PhD student	papp.agoston@science.unideb.hu	M408
Mr. Péter Sebestyén	PhD student	sebestyen.peter@science.unideb.hu	M408

Department of Analysis (home page: https://math.unideb.hu/en/introduction-departmentanalysis)
4032 Debrecen, Egyetem tér 1, Geomathematics Building

Name	Position	E-mail	room
Dr. Zoltán Boros	Associate Professor, Head of Department	zboros@science.unideb.hu	M326
Prof. Dr. Zsolt Páles	University Professor	pales@science.unideb.hu	M321
Prof. Dr. György Gát	University Professor	gat.gyorgy@ science.unideb.hu	M324
Dr. Mihály Bessenyei	Associate Professor	besse@science.unideb.hu	M326
D. Eszan Novák- Gselmann	Associate Professor	gselmann@science.unideb.hu	M325
Dr. Borbála Fazekas	Assistant Professor	borbala.fazekas@science.unideb.hu	M325
Dr. Rezső László Lovas	Assistant Professor	lovas@science.unideb.hu	M330
Dr. Fruzsina Mészáros	Assistant Professor	mefru@science.unideb.hu	M325
Dr. Gergő Nagy	Assistant Professor	nagyg@science.unideb.hu	M328
Dr. Tibor Kiss	Assistant Lecturer	kiss.tibor@science.unideb.hu	M328
Mr. Richárd Grünwald	PhD student	richard.grunwald@ science.unideb.hu	M322
Mr. Gábor Marcell Molnár	PhD student	molnar.gabor.marcell@ @cience.unideb.hu	M322
Ms. Evelin Pénzes	PhD student	penzes.evelin@ science.unideb.hu	M319
Mr. Norbert Tóth	PhD student	toth.norbert@science.unideb.hu	M323

Mr. Péter Tóth	PhD student	toth.peter@science.unideb.hu	M322

Department of Geometry (home page: https://math.unideb.hu/en/introduction-departmentgeometry)
4032 Debrecen, Egyetem tér 1, Geomathematics Building

Name	Position	E-mail	room
Dr. Zoltán Muzsnay	Associate Professor, Head of Department	muzsnay@science.unideb.hu	M305
Dr. Ágota Figula	Associate Professor	figula@ science.unideb.hu	M303
Dr. Eszter Herendiné Kónya	Associate Professor	eszter.konya@science.unideb.hu	M307
Dr. Zoltán Kovács	Associate Professor	kovacsz@ @science.unideb.hu	M306
Dr. László Kozma	Associate Professor	kozma@unideb.hu	M306
Dr. Csaba Vincze	Associate Professor, Director of Institute	csvincze@science.unideb.hu	M304
Dr. Tran Quoc Binh	Senior Research Fellow	binh@ science.unideb.hu	M305
Dr. Zoltán Szilasi	Assistant Professor	szilasi.zoltan@ science.unideb.hu	M329
Dr. Ábris Nagy	Assistant Lecturer	abris.nagy@science.unideb.hu	M304
Ms. Emőke Báró	PhD student	baro.emoke@science.unideb.hu	-
Mr. Márton Kiss	PhD student	kiss.marton@science.unideb.hu	M308
Ms. Orsolya Lócska	PhD student	locska.orsolya@science.unideb.hu	M308
Ms. Anna Muzsnay	PhD student	muzsnay.anna@science.unideb.hu	M404
Mr. Márk Oláh	PhD student	olah.mark@science.unideb.hu	M329
Ms. Gabriella Papp	PhD student	papp.gabriella@science.unideb.hu	-

ACADEMIC CALENDAR

General structure of the academic semester (2 semesters/year):

Study period	$1^{\text {st }}$ week	Registration*	1 week
	$2^{\text {nd }}-15^{\text {th }}$ week	Teaching period	14 weeks
Exam period	directly after the study period	Exams	7 weeks

*Usually, registration is scheduled for the first week of September in the fall semester, and for the first week of February in the spring semester.

For further information please check the following link:
https://www.edu.unideb.hu/tartalom/downloads/University_Calendars_2023_24/University_calendar_2023-2024-Faculty_of_Science_and_Technology.pdf?_ga=2.243703237.1512753347.1689488152-
28702506.1689488059

THE APPLIED MATHEMATICS MSC PROGRAM

Information about the Program

Name of MSc Program:	Applied Mathematics MSc Program
Specialization available:	
Field, branch:	Science
Qualification:	Applied Mathematician
Mode of attendance:	Full-time
Faculty, Institute:	Faculty of Science and Technology Institute of Mathematics
Program coordinator:	Prof. Dr. Ákos Pintér, University Professor
Duration:	4 semesters
ECTS Credits:	120

Objectives of the MSc program:

The aim of the Applied Mathematics MSc program is to train applied mathematicians who have research-level knowledge and modelling experience that makes them capable of solving problems in daily life practice. They are open to receive new results of their professional field. They are able to model and solve daily life problems and manage to implement solutions. They are prepared to continue to study in a PhD program.

Professional competences to be acquired

An Applied Mathematician:

a) Knowledge:

- He/she knows the methods of mathematical sciences, regarding theories in the fields of algorithms, applied analysis, discrete mathematics, operations research, probability theory and mathematical statistics, both at a system level and in context
- He/she knows the results of applied mathematics in context, regarding theories in the fields of algorithms, applied analysis, discrete mathematics, operations research, probability theory and mathematical statistics.
- He/she knows the deeper and more comprehensive correlations between the subdisciplines of applied mathematics, and how these fields interrelate and build upon each other.
- He/she has a knowledge of abstract mathematical thinking, and that of abstract mathematical terms and concepts.
- He/she has an appropriate knowledge of computer science and information technology necessary for the formulation and simulation of applied mathematical models.
- $\mathrm{He} /$ she knows the fundamentals of the theory of differential equations and approximating calculations, as well as, their most important applications in the modelling of natural, technical and economic phenomena.
- He/she knows the fundamentals of the modern theory of probability theory and mathematical statistics.
- He/she knows the fundamentals of coding theory and cryptography, the theoretical background and applicability of the codes and encryptions most commonly used in practice.
$-\mathrm{He} /$ she knows the theoretical background of approximating problems.
- $\mathrm{He} /$ she knows how to use the most important mathematical and statistical software packages, as well as, he/she is aware of their mathematical background and the limits of their applicability.
- He/she has a basic knowledge of micro- and macro-economics, and that of financial literacy.
- $\mathrm{He} /$ she knows the different procedures of modelling stochastic phenomena and processes.
- He/she is aware of the mathematical theory of stochastic and financial processes, time series, venture processes, life insurance and non-life insurance.
- He/she knows the mathematical analyses and models of financial processes and insurance issues.

b) Abilities:

- He/she is capable of applying the methods of mathematical sciences regarding theories in the fields of algorithms, applied analysis, discrete mathematics, operations research, probability theory and mathematical statistics.
- He /she is capable of establishing the mathematical models of phenomena observed in the surrounding world, as well as, of using the results of modern mathematics to explain and describe these phenomena.
- He/she is capable of abstraction, that is, capturing interrelations observed in daily life practice on an abstract level.
- He/she is capable of creatively combining and using his/her knowledge acquired in different application areas of mathematics to solve problems emerging in animate and inanimate nature, in the world of engineering and information technology, and in economic and financial life.
- He/she is capable of understanding complicated systems emerging in nature, engineering and economic life, of executing a mathematical analysis and modelling of them, and the ability to prepare decision-making processes.
- He/she is capable of understanding the internal mechanisms underlying problems, as well as, designing tasks and executing them at a high level.
- He/she is capable of formulating optimisation problems possibly underlying everyday decision situations, as well as, communicating the related conclusions to non-professionals.
- He/she is capable of executing calculation tasks emerging in nature, engineering and economic life, using computational tools and methods.
- He/she is capable of recognising tasks that require long series of computations and huge storage capacity, and of analysing alternative approaches.
- $\mathrm{He} /$ she is capable of clearly presenting mathematical results and arguments, as well as the related conclusions and is capable of professional communication.
- He/she is capable of competently interpreting the problems of his/her own professional field both for professionals and non-professionals.

c) Attitude:

- He/she aspires to get acquainted with new results of applied mathematics.
- He/she aspires to apply the results of applied mathematics as widely as possible.
- With the help of his/her knowledge acquired in applied mathematics, he/she aspires to distinguish between scientifically well-established (exact) statements and inadequately substantiated ones in his/her own professional field.
- $\mathrm{He} /$ she aspires to recognize further correlations between modern options of application in the field of applied mathematics, to synthetize and evaluate them at a high level and with scientific justification, using the tools of his/her own profession.
- He/she is receptive and open to adapting the different ways of reasoning, methods and concepts acquired in the field of applied mathematics to new fields of application, as well as, to achieving new results.
- $\mathrm{He} /$ she continuously aspires to enhance the scope of his/her knowledge, to learn new mathematical competencies.
d) Autonomy and responsibility:
- He /she responsibly, self-critically and realistically measures his/her knowledge acquired in the field of applied mathematics.
- With the help of his/her critical attitude and the system thinking skills he/she acquired, he/she participates in group work with responsibility, and if needed, cooperates with experts from professional fields other than his/hers.
- With the help of his/her high-level knowledge of applied mathematics, he/she makes an independent selection as to which methods and procedures he/she will use when solving different application problems.
- In his/her research activities, as well as, in mathematical applications, he/she considers it important to execute these practices in line with the highest ethical standards.
- $\mathrm{He} /$ she is aware, on the one hand, of the importance of mathematical thinking and precise conceptualization, and on the other hand, of the limits of applying mathematical models; thus he/she formulates his/her opinion on that basis.
- When applying mathematics, he/she responsibly represents his/her opinion formulated on the basis of his/her acquired knowledge.

Completion of the MSc Program

The Credit System

Majors in the Hungarian Education System have generally been instituted and ruled by the Act of Parliament under the Higher Education Act. The higher education system meets the qualifications of the Bologna Process that defines the qualifications in terms of learning outcomes: statements of what students know and can do on completing their degrees. In describing the cycles, the framework uses the European Credit Transfer and Accumulation System (ECTS).
ECTS was developed as an instrument of improving academic recognition throughout the European Universities by means of effective and general mechanisms. ECTS serves as a model of academic recognition, as it provides greater transparency of study programs and student achievement. ECTS in no way regulates the content, structure and/or equivalence of study programs.
Regarding each major the Higher Education Act prescribes which professional fields define a certain training program. It contains the proportion of the subject groups: natural sciences, economics and humanities, subject-related subjects and differentiated field-specific subjects.

During the program students have to complete a total amount of 120 credit points. It means approximately 30 credits per semester. The curriculum contains the list of subjects (with credit points) and the recommended order of completing subjects which takes into account the prerequisite(s) of each subject. You can find the recommended list of subjects/semesters in chapter "Model Curriculum of Applied Mathematics MSc Program".

Model Curriculum of Applied Mathematics MSc Program

	semesters				ECTS credit points	evaluation
	1.	2.	3.			
	contact hours, types of teaching (1 - lecture, \mathbf{p} - practice), credit points					
Basics Students having a BSc degree in Mathematics are granted exemption from these subjects. Students having degree in other subjects have to put in a credit-acceptance form. The Institue of Mathematics will decide what basic subjects the students will have to learn.						
Introduction to modern algebra Dr. Pongrácz András	281/3cr. 28p/2cr.				$3+2$	exam mid-semester grade
Selected topics in geometry Dr. Kozma László	281/3cr. $28 \mathrm{p} / 2 \mathrm{cr}$.				$3+2$	exam, mid-semester grade
Operation research Dr. Mészáros Fruzsina	281/3cr. $28 \mathrm{p} / 2 \mathrm{cr}$.				$3+2$	exam mid-semester grade
Probability theory Dr. Fazekas István	281/3cr. 28p/2cr.				$3+2$	exam mid-semester grade
Advanced prof subject group						
Graph Theory and Applications Dr. Nyul Gábor	281/3cr. $28 \mathrm{p} / 2 \mathrm{cr}$.				$3+2$	exam mid-semester grade
Algorithms in mathematics Dr. Bérczes Attila		$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$			$3+2$	exam mid-semester grade
Convex optimization Dr. Bessenyei Mihály	281/3cr. $28 \mathrm{p} / 2 \mathrm{cr}$.				$3+2$	$\begin{gathered} \text { exam } \\ \text { mid-semester } \\ \text { grade } \\ \hline \end{gathered}$
Discrete Optimization Dr. Nyul Gábor		$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$			$3+2$	exam mid-semester grade
Applications of ordinary differential equations Dr. Novák-Gselmann Eszter			281/3cr. 28p/2cr.		$3+2$	exam mid-semester grade
Partial differential equations Dr. Fazekas Borbála				$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$	$3+2$	exam mid-semester grade
Stochastic processes Dr. Szokol Patrícia		$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$			$3+2$	exam mid-semester grade
Multivariate analysis Dr. Baran Sándor			281/3cr. $28 \mathrm{p} / 2 \mathrm{cr}$.		$3+2$	exam mid-semester grade
Option pricing Dr. Gáll József	281/3cr. 28p/2cr.				$3+2$	exam mid-semester grade
Financial mathematics I Dr. Gáll József		$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$			$3+2$	exam mid-semester grade
Introduction to finance Dr. Gáll József	$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$				5	exam

Microeconomics Dr. Kapás Judit	$\begin{aligned} & \hline 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$			5	exam
Econometrics Dr. Baran Sándor		$\begin{aligned} & 281 / 3 \mathrm{cr} \text {. } \\ & 14 \mathrm{p} / 2 \mathrm{cr} \text {. } \end{aligned}$		4	exam
Financial accounting Dr. Tóth Kornél			$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$	5	exam
Game theory Dr. Boros Zoltán			$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$	5	exam

Elective courses

The required credits points of elective subjects depend on how many subjects are accepted from the Basics. (The student has to learn subjects from elective courses for the same amount of credit points that is accepted from the Basics.)

Macroeconomics Dr. Czeglédi Pál	.	$\begin{aligned} & 281 / 3 \mathrm{cr} . \\ & 28 \mathrm{p} / 2 \mathrm{cr} . \end{aligned}$	5	exam
Insurance mathematics Dr. Aradi Bernadett	$\begin{array}{\|c\|} \hline 281 / 3 \mathrm{cr} \text {. } \\ \text { (or semester 4) } \\ \hline \end{array}$		3	exam
Financial mathematics II Dr. Gáll József		281/3cr.	3	exam
Finite Geometries and Coding Theory Dr. Szilasi Zoltán	$281 / 3 \mathrm{cr}$. $28 \mathrm{p} / 2 \mathrm{cr}$. (or semester 4)		$3+2$	exam mid-semester grade
Fourier series Dr. Gát György		$\begin{aligned} & 281 / 3 \mathrm{cr} \text {. } \\ & 14 \mathrm{p} / 1 \mathrm{cr} \text {. } \end{aligned}$	4	exam

Thesis I.			10 cr.		10	mid-semester grade
Thesis II.				10 cr.	10	mid-semester grade

According to the Rules and Regulations of the University of Debrecen, a student has to complete the online course for work and fire safety. Registration for the course and completion are necessary for obtaining the pre-degree certificate. For an MSc student, the course is necessary only if her/his BSc diploma has been awarded outside of the University of Debrecen. Students have to register for the subject MUNKAVEDELEM in the Neptun system.
They must read an online material until the end to get the signature on Neptun for the completion of the course. The number of credit points for the course is 1 . The link of the online course is available on the webpage of the Faculty.

Physical Education

According to the Rules and Regulations of the University of Debrecen, a student has to complete Physical Education courses at least in one semester during his/her Master's training. The number of credit points for those courses is 1 per semester. Our University offers a wide range of facilities to complete them. Further information is available from the Sports Centre of the University, its website is: http://sportsci.unideb.hu.

Pre-degree Certification

A pre-degree certificate is issued by the Faculty after completion of the master's (MSc) program. The pre-degree certificate can be issued if the student has successfully completed the study and exam requirements as set out in the curriculum, the requirements relating to Physical Education as set out in Section 10 in Rules and Regulations, internship (mandatory) - with the exception of preparing thesis - and gained the necessary credit points (120). The pre-degree certificate verifies (without any mention of assessment or grades) that the student has fulfilled all the necessary study and exam requirements defined in the curriculum and the requirements for Physical Education. Students who obtained the pre-degree certificate can submit the thesis and take the final exam.

Thesis

Students have to choose a topic for their thesis in the 2nd semester. They have to write it in two semesters. The thesis should be about $25-40$ pages long and using the LaTeX document preparation system is recommended. The cover page has to contain the name of the institute, the title of the thesis, the name and the degree program of the student, the name and the university rank of the supervisor. Beside the detailed discussion of the topic, the thesis should contain an introduction, a table of contents and a bibliography. The thesis has to be defended in the final exam.

Final Exam

The final exam is an oral exam before a committee designated by the Director of the Institute of Mathematics and approved by the leaders of the Faculty of Science and Technology. The
questions of the final exam comprise the compulsory courses of the Applied Mathematics MSc Program. The student draws a random question from the entire list, and after a certain preparation period, gives an account on it. After this, the committee chooses a small item from one of the other questions, and after a preparation period the student gives an account on this as well. The committee gives a single grade for the student's answers in the final exam.

Final Exam Board

Board chair and its members are selected from the acknowledged internal and external experts of the professional field. Traditionally, it is the chair and in case of his/her absence or indisposition the vice-chair who will be called upon, as well. The board consists of - beside the chair - at least two members (one of them is an external expert), and questioners as required. The mandate of a Final Examination Board lasts for one year.

Repeating a failed Final Exam
If any part of the final exam is failed it can be repeated according to the rules and regulations. A final exam can be retaken in the forthcoming final exam period. If the Board qualified the thesis unsatisfactory, the student cannot take the final exam and he has to make a new thesis. A repeated final exam can be taken twice on each subject.

Diploma

The diploma is an official document decorated with the coat of arms of Hungary which verifies the successful completion of studies in the Applied Mathematics Master Program. It contains the following data: name of HEI (higher education institution); institutional identification number; serial number of diploma; name of diploma holder; date and place of his/her birth; level of qualification; training program; specialization; mode of attendance; place, day, month and year issued. Furthermore, it has to contain the rector's (or vice-rector's) original signature and the seal of HEI. The University keeps a record of the diplomas issued.

In Applied Mathematics Master Program the diploma grade is calculated as the average grade of the results of the followings:

- Weighted average of the overall studies at the program (A)
- Average of grades of the thesis and its defense given by the Final Exam Board (B)
- Average of the grades received at the Final Exam for the two subjects (C)

Diploma grade $=(\mathrm{A}+\mathrm{B}+\mathrm{C}) / 3$
Classification of the award on the bases of the calculated average:

Excellent	$4.81-5.00$
Very good	$4.51-4.80$
Good	$3.51-4.50$
Satisfactory	$2.51-3.50$
Pass	$2.00-2.50$

Course Descriptions of Applied Mathematics MSc Program

Title of course: Introduction to modern algebra Code: TTMME 0101	ECTS Credit points: 3
Type of teaching, contact hours - lecture: 2 hours/week - practice: - - laboratory: -	
Evaluation: exam	
Workload (estimated), divided into contact hours: - lecture: 28 hours/week - practice: - - laboratory: - - home assignment: - - preparation for the exam: 62 hours Total: 90 hours	
Year, semester: $1^{\text {st }}$ year, 1 st semester	
Its prerequisite(s): -	
Further courses built on it: -	
Topics of course	
Sylow's theorems. Semidirect product. Maximal subgroups of p-groups are normal of index p. Characteristic subgroup, commutator. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points. Free groups, generators, relations, Dyck's theorem. Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions. Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem. Algebras, minimal polynomial over algebras, Frobenius's theorem. Splitting field, existence, uniqueness, algebraic closure existence, uniqueness. Normal extensions, extensions of perfect fields are simple. Galois theory. Fundamental theorem of algebra. Compass and ruler constructions. Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.	

Literature

Compulsory:

Recommended:

John B. Fraleigh: A first course in abstract algebra, Addison-Wesley Publishing Company, 1989. Derek J. S. Robinson: A course in the theory of groups, Springer-Verlag, 1980.

Schedule:

$I^{s t}$ week
Sylow's theorems. Semidirect products.
$2^{\text {nd }}$ week
Maximal subgroups of p -groups are normal of index p . Characteristic subgroup, commutator. Fundamental theorem of finite Abelian groups.
$3^{\text {rd }}$ week

Isomorphism theorems. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points.
$4^{\text {th }}$ week
Free groups, generators, relations, Dyck's theorem.
$5^{\text {th }}$ week
Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions.
$6^{\text {th }}$ week
Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Algebras, minimal polynomial over algebras, Frobenius' theorem.
$9^{\text {th }}$ week
Splitting field, existence, uniqueness, algebraic closure existence, uniqueness.
$10^{\text {th }}$ week
Normal extensions, finite extensions of perfect fields are simple.
$11^{\text {th }}$ week
Fundamental theorem of Galois theory.
$12^{\text {th }}$ week
Fundamental theorem of algebra. Compass and straightedge constructions.
$13^{\text {th }}$ week
Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

If the student fail the course TTMMG0101, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-69$	satisfactory (3)
$70-79$	good (4)
$80-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. András Pongrácz, assistant professor, PhD
Lecturer: Dr. András Pongrácz, assistant professor, PhD

Title of course: Introduction to modern algebra

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
- laboratory: -
```

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 32 hours
- preparation for the exam: -

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Sylow's theorems. Semidirect product. Maximal subgroups of p-groups are normal of index p. Characteristic subgroup, commutator. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points. Free groups, generators, relations, Dyck's theorem. Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions. Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem. Algebras, minimal polynomial over algebras, Frobenius's theorem. Splitting field, existence, uniqueness, algebraic closure existence, uniqueness. Normal extensions, extensions of perfect fields are simple. Galois theory. Fundamental theorem of algebra. Compass and ruler constructions. Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials.

Literature

Compulsory:

Recommended:

John B. Fraleigh: A first course in abstract algebra, Addison-Wesley Publishing Company, 1989. Derek J. S. Robinson: A course in the theory of groups, Springer-Verlag, 1980.

Schedule:

$I^{s t}$ week
Sylow's theorems. Semidirect products.
$2^{\text {nd }}$ week
Maximal subgroups of p -groups are normal of index p . Characteristic subgroup, commutator.
Fundamental theorem of finite Abelian groups.
$3^{r d}$ week
Isomorphism theorems. Solvable groups and their basic properties. Alternating group is simple if acting on at least 5 points.
$4^{\text {th }}$ week
Free groups, generators, relations, Dyck's theorem.
$5^{\text {th }}$ week

Necessary and sufficient condition for a ring to be a unique factorization domain, ascending and descending chain conditions.
$6^{\text {th }}$ week
Field of fractions. Artinian and Noetherian rings, Hilbert's basis theorem.
$7^{\text {th }}$ week
Students can ask questions and get an overview on the subject material in all topics prior to the first test.
$8^{\text {th }}$ week
Algebras, minimal polynomial over algebras, Frobenius' theorem.
$9^{\text {th }}$ week
Splitting field, existence, uniqueness, algebraic closure existence, uniqueness.
$10^{\text {th }}$ week
Normal extensions, finite extensions of perfect fields are simple.
$11^{\text {th }}$ week
Fundamental theorem of Galois theory.
$12^{\text {th }}$ week
Fundamental theorem of algebra. Compass and straightedge constructions.
$13^{\text {th }}$ week
Theorem of Abel and Ruffini, Casus Irreducibilis is unavoidable for degree three polynomials. $14^{\text {th }}$ week
Students can ask questions and get an overview on the subject material in all topics prior to the second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The preliminary requirement to pass the course is to obtain at least 51 percent of total points from short tests written on a once a week basis with the exception of the $1^{\text {st }}, 7^{\text {th }}$ and $14^{\text {th }}$ week.
The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-69$	satisfactory (3)
$70-79$	good (4)
$80-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. András Pongrácz, assistant professor, PhD
Lecturer: Dr. András Pongrácz, assistant professor, PhD

Title of course: Selected topics in geometry

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: 30 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s):
Further courses built on it: -

Topics of course

Differentiable curves. Curvature, torsion. The fundamental theorem of curves. Surfaces in the Euclidean space. Fundamental form of surfaces. Normal curvature, principal curvatures, principal directions. Variational problem of arc-length. Geodesics. Geodesic curvature. Minimizing property of geodesics. Axioms of affine and projective planes. Projective completion of an affine plane. Duality. Vector space model of projective planes, homogenous coordinates. Perspectivities (central projections) and projectivities. Cross ratio of four points or lines, Pappus-Steiner theorem. Desargues's theorem and Pappus's theorem. Complete quadrilateral, complete quadrangle, harmonic sets of points and lines. Collineations, fundamental theorem of projective geometry. The parallel postulate, the development of hyperbolic geometry. The Cayley-Klein model of hyperbolic geometry, Poincaré disk model and upper half-plane model. Description of congruences. Spherical geometry: measuring distance on the sphere, spherical triangles. Elliptic metric.

Literature

Compulsory/Recommended Readings:

Wolfgang Kühnel: Differential Geometry: Curves - Surgaces - Manifolds, AMS, 2006.
H. S. M. Coxeter: Projective Geometry, Springer, 1974.

Patrick J. Ryan: Euclidean and non-Euclidean geometry: an analytical approach, Cambridge, 1986.

Schedule:

$I^{s t}$ week
Regular smooth curves in Euclidean space. Reparametrization of curves. Arc length of curves.
Natural parametrization, simple curves.
$2^{\text {nd }}$ week
Signed curvature of regular planar curves. Frenet basis. The rounding number of closed planar curves, and the theorem about it. The fundamental theorem of planar curves.
$3^{\text {rd }}$ week
The Frenet basis of spatial curves, Cartan matrix. Curvature and torsion, Frenet formulae.
$4^{\text {th }}$ week
The best approximating circle and plane of a curve at a point. The fundamental theorem of theory of curves.
$5^{\text {th }}$ week
Surfaces in space, some representation of surfaces. Tangent plane at a point of the surface. Normal unit vector field.
$6^{\text {th }}$ week
Measurement of a surface. The first main scalars of the surfaces, metrical canonical form. The length of curves on surfaces. Angle of tangential vectors. The surface area of compact surfaces.
$7^{\text {th }}$ week
The axioms of projective and affine planes. The projective extension of affine planes. The principle of duality.
$8^{\text {th }}$ week
The vector space model of projective planes, homogeneous coordinates.
$9^{\text {th }}$ week
Perspectivities and projective mappings. Cross ratio of 4 points and 4 concurrent lines. PapposSteiner theorem.
$10^{\text {th }}$ week
The axioms of absolute geometry. The role of the axiom of parallels, the concept of hyperbolic geometry.
$11^{\text {th }}$ week
The verification of the hyperbolic axioms in the case of the Cayley-Klein model. The description of congruencies.
$12^{\text {th }}$ week
Geometrical concepts in hyperbolic geometry: perpendicular lines, special points and lines of triangles.
$13^{\text {th }}$ week
Some further models of hyperbolic geometry: the circle model and the half-plane model of Poincare. Representation of isometries in these models.
$14^{\text {th }}$ week
Spherical geometry: distance on the sphere, theorems of spherical triangles. Elliptic metric.

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments of the course to each practice class. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

- for a grade

The course ends in an examination.

The minimum requirement for the mid-term and end-term tests and the examination respectively is 50%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-69$	satisfactory (3)
$70-79$	good (4)
$80-100$	excellent (5)

If the score of any test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
-an offered grade:
it may be offered for students if the average grade of the two designing tasks is at least satisfactory (3) and the average of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. László Kozma, associate professor, PhD
Lecturer: Dr. László Kozma, associate professor, PhD

Title of course: Selected topics in geometry

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 32 hours
- preparation for the exam: -

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s):
Further courses built on it: -

Topics of course

Differentiable curves. Curvature, torsion. The fundamental theorem of curves. Surfaces in the Euclidean space. Fundamental form of surfaces. Normal curvature, principal curvatures, principal directions. Variational problem of arc-length. Geodesics. Geodesic curvature. Minimizing property of geodesics. Axioms of affine and projective planes. Projective completion of an affine plane. Duality. Vector space model of projective planes, homogenous coordinates. Perspectivities (central projections) and projectivities. Cross ratio of four points or lines, Pappus-Steiner theorem. Desargues's theorem and Pappus's theorem. Complete quadrilateral, complete quadrangle, harmonic sets of points and lines. Collineations, fundamental theorem of projective geometry. The parallel postulate, the development of hyperbolic geometry. The Cayley-Klein model of hyperbolic geometry, Poincaré disk model and upper half-plane model. Description of congruences. Spherical geometry: measuring distance on the sphere, spherical triangles. Elliptic metric.

Literature

Compulsory/Recommended Readings:

Wolfgang Kühnel: Differential Geometry: Curves - Surgaces - Manifolds, AMS, 2006.
H. S. M. Coxeter: Projective Geometry, Springer, 1974.

Patrick J. Ryan: Euclidean and non-Euclidean geometry: an analytical approach, Cambridge, 1986.

Schedule:

$I^{s t}$ week
Regular smooth curves in Euclidean space. Reparametrization of curves. Arc length of curves. Natural parametrization, simple curves. Examples and basic calculation.
$2^{\text {nd }}$ week
Signed curvature of regular planar curves. Frenet basis. The rounding number of closed planar curves, and the theorem about it. The fundamental theorem of planar curves. Examples and basic calculation.
$3^{\text {rd }}$ week

The Frenet basis of spatial curves, Cartan matrix. Curvature and torsion, Frenet formulae. Examples and basic calculation.

$4^{\text {th }}$ week

The best approximating circle and plane of a curve at a point. The fundamental theorem of theory of curves. Examples and basic calculation.
$5^{\text {th }}$ week
Surfaces in space, some representation of surfaces. Tangent plane at a point of the surface. Normal unit vector field. Examples and basic calculation.
$6^{\text {th }}$ week
Measurement of a surface. The first main scalars of the surfaces, metrical canonical form. The length of curves on surfaces. Angle of tangential vectors. The surface area of compact surfaces.
$7^{\text {th }}$ week
The axioms of projective and affine planes. The projective extension of affine planes. The principle of duality. Examples and basic calculation.
$8^{\text {th }}$ week
The vector space model of projective planes, homogeneous coordinates. Examples and basic calculation.
$9^{\text {th }}$ week
Perspectivities and projective mappings. Cross ratio of 4 points and 4 concurrent lines. PapposSteiner theorem. Examples and basic calculation.
$10^{\text {th }}$ week
The axioms of absolute geometry. The role of the axiom of parallels, the concept of hyperbolic geometry. Examples and basic calculation.
$11^{\text {th }}$ week
The verification of the hyperbolic axioms in the case of the Cayley-Klein model. The description of congruencies. Examples and basic calculation.
$12^{\text {th }}$ week
Geometrical concepts in hyperbolic geometry: perpendicular lines, special points and lines of triangles. Examples and basic calculation.
$13^{\text {th }}$ week
Some further models of hyperbolic geometry: the circle model and the half-plane model of Poincare. Representation of isometries in these models. Examples and basic calculation.
$14^{\text {th }}$ week
Spherical geometry: distance on the sphere, theorems of spherical triangles. Elliptic metric.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments of the course to each practice class. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

```
- for a practical grade
```

The minimum requirement for the mid-term and end-term tests respectively is 50%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-69$	satisfactory (3)
$70-79$	good (4)
$80-100$	excellent (5)

If the score of any test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
-an offered grade:
it may be offered for students if the average grade of the two designing tasks is at least satisfactory (3) and the average of the mid-term and end-term tests is at least satisfactory (3). The offered grade is the average of them.

Person responsible for course: Dr. László Kozma, associate professor, PhD
Lecturer: Dr. László Kozma, associate rofessor, PhD

Title of course: Operation research

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses built on it:-

Topics of course

Problems reducible to linear programming tasks. Extreme points of convex polyhedra, simplex algorithm and its geometry, sensitivity analysis. Duality. Transportation and assignment model, network models. Special linear programming models.

Literature

Compulsory:

Recommended:

- Vanderbei, R.: Linear Programming, Foundations and Extensions, Kluwer Academic Publishers, 1998.
- Bertsimas, D.; Tsitsiklis, J.: Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, 6, Athena Scientific, Belmont, 1997.

Schedule:

$I^{s t}$ week
Introduction: The standard maximum and minimum problems, the diet problem, the optimal assignment problem
$2^{\text {nd }}$ week
Linear programming problems, the simplex method
$3^{\text {rd }}$ week
Degeneracy, lexicographic simplex method.
$4^{\text {th }}$ week
Effectiveness, number of steps, worst case, average case.
$5^{\text {th }}$ week
Duality I., special case, weak duality theorem
$6^{\text {th }}$ week

Duality II., strong duality theorem, dual simplex method
$7^{\text {th }}$ week
Matrix form, simplex tableau
$8^{\text {th }}$ week
Primal and dual simplex methods.
$9^{\text {th }}$ week
Generalized problem to standard case.
$10^{\text {th }}$ week
Geometry of the simplex method
$11^{\text {th }}$ week
The transportation problem I.
$12^{\text {th }}$ week
The transportation problem II.
$13^{\text {th }}$ week
Assignment problem I.
$14^{\text {th }}$ week
Assignment problem II.

Requirements:

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an examination. The minimum requirement for the examination is 50%. Based on the score of the exam the grade for the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-76$	satisfactory (3)
$77-88$	good (4)
$89-100$	excellent (5)

Person responsible for course: Dr. Fruzsina Mészáros, assistant professor, PhD
Lecturer: Dr. Fruzsina Mészáros, assistant professor, PhD

Title of course: Operation research

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the tests: 32 hours

Total: 60 hours
Year, semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses built on it:-

Topics of course

Problems reducible to linear programming tasks. Extreme points of convex polyhedra, simplex algorithm and its geometry, sensitivity analysis. Duality. Transportation and assignment model, network models. Special linear programming models.

Literature

Compulsory:

Recommended:

- Vanderbei, R.: Linear Programming, Foundations and Extensions, Kluwer Academic Publishers, 1998.
- Bertsimas, D.; Tsitsiklis, J.: Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, 6, Athena Scientific, Belmont, 1997.

Schedule:

$I^{s t}$ week
Introduction: The standard maximum and minimum problems, the diet problem, the optimal assignment problem
$2^{\text {nd }}$ week
Linear programming problems, the simplex method
$3^{\text {rd }}$ week
Degeneracy, lexicographic simplex method.
$4^{\text {th }}$ week
Effectiveness, number of steps, worst case, average case.
$5^{\text {th }}$ week
Duality I., special case, weak duality theorem
$\sigma^{\text {th }}$ week

Duality II., strong duality theorem, dual simplex method
$7^{\text {th }}$ week
Matrix form, simplex tableau
$8^{\text {th }}$ week
Primal and dual simplex methods.
$9^{\text {th }}$ week
Generalized problem to standard case.
$10^{\text {th }}$ week
Geometry of the simplex method
$11^{\text {th }}$ week
The transportation problem I.
$12^{\text {th }}$ week
The transportation problem II.
$13^{\text {th }}$ week
Assignment problem I.
$14^{\text {th }}$ week
Assignment problem II.

Requirements:

- for a practical

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
During the semester there are two tests: one test in the $7^{\text {th }}$ week and the other test in the $14^{\text {th }}$ week. The minimum requirement for the tests respectively is 50%. Based on the score of the tests, the grade for the tests is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-76$	satisfactory (3)
$77-88$	good (4)
$89-100$	excellent (5)

If the score of any test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Fruzsina Mészáros, assistant professor, PhD
Lecturer: Dr. Fruzsina Mészáros, assistant professor, PhD

Title of course: Probability theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: 30 hours
- preparation for the exam: 32 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): none
Further courses built on it: -

Topics of course

Probability, random variables, distributions. Asymptotic theorems of probability theory.

Literature

Compulsory:

- A. N. Shiryayev: Probability, Springer-Verlag, Berlin, 1984.
- Ash, R. B.: Real Analysis and Probability. Academic Press, New York-London, 1972.
- Bauer, H.: Probability Theory. Walter de Gruyter, Berlin-New York. 1996.

Schedule:

$I^{\text {st }}$ week
Statistical observations. Numerical and graphical characteristics of the sample. Relative frequency, events, probability. Classical probability. Finite probability space.
$2^{\text {nd }}$ week
Kolmogorov's probability space. Properties of probability. Finite and countable probability spaces.
Conditional probability, independence of events. Borel-Cantelli lemma.
$3^{\text {rd }}$ week
Total probability theorem, the Bayes rule. Discrete random variables. Expectation, Standard deviation. Binomial, hypergeometric, and Poisson distributions.
$4^{\text {th }}$ week
Random variables, distribution, cumulative distribution function. Absolutely continuous distribution, probability density function. The general notion of distribution.
$5^{\text {th }}$ week
Expectation, variance and median. Uniform, exponential, normal distributions.
$6^{\text {th }}$ week
Joint distribution function and joint probability density function of random variables. Independent random variables, correlation coefficient.
$7^{\text {th }}$ week
Multivariate distributions. Expectation vector and variance matrix of random a random vector. Independence of random variables.
$8^{\text {th }}$ week
Multivariate normal distribution, concentration ellipsoid. Sample from normal distribution. Chisquared, Student's t, F-distributions.

$9^{\text {th }}$ week

Weak law of large numbers. Almost sure convergence, convergence in distribution, convergence in probability, Lp convergence.
$10^{\text {th }}$ week
Kolmogorov's inequality. Kolmogorov's three-series theorem. Strong laws of large numbers.
$11^{\text {th }}$ week
Characteristic function and its properties. Inversion formulas. Continuity theorem
$12^{\text {th }}$ week
Central limit theorem. Law of the iterated logarithm. Arcsine laws.
$13^{\text {th }}$ week
Conditional distribution function, conditional density function, conditional expectation.
$14^{\text {th }}$ week
Comparison of the limit theorems.

Requirements:

- for a grade

he course ends in an examination. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:

- the average grade of the two designing tasks
- the result of the examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 50%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-69$	pass (2)
$70-79$	satisfactory (3)
$80-89$	good (4)
$90-100$	excellent (5)

If the score of any test is below 50 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. István Fazekas, university professor, DSc
Lecturer: Dr. István Fazekas, university professor, DSc

Title of course: Probability theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 16 hours
- preparation for the exam: 16 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): none
Further courses built on it: -

Topics of course

Probability, random variables, distributions. Asymptotic theorems of probability theory.

Literature

Compulsory:

- A. N. Shiryayev: Probability, Springer-Verlag, Berlin, 1984.
- Ash, R. B.: Real Analysis and Probability. Academic Press, New York-London, 1972.
- Bauer, H.: Probability Theory. Walter de Gruyter, Berlin-New York. 1996.

Schedule:

$I^{\text {st }}$ week
Statistical observations. Numerical and graphical characteristics of the sample. Relative frequency, events, probability. Classical probability. Finite probability space.
$2^{\text {nd }}$ week
Kolmogorov's probability space. Properties of probability. Finite and countable probability spaces.
Conditional probability, independence of events. Borel-Cantelli lemma.
$3^{\text {rd }}$ week
Total probability theorem, the Bayes rule. Discrete random variables. Expectation, Standard deviation. Binomial, hypergeometric, and Poisson distributions.
$4^{\text {th }}$ week
Random variables, distribution, cumulative distribution function. Absolutely continuous distribution, probability density function. The general notion of distribution.
$5^{\text {th }}$ week
Expectation, variance and median. Uniform, exponential, normal distributions.
$6^{\text {th }}$ week
Joint distribution function and joint probability density function of random variables. Independent random variables, correlation coefficient.

$7^{\text {th }}$ week

Multivariate distributions. Expectation vector and variance matrix of random a random vector. Independence of random variables.
$8^{\text {th }}$ week
Multivariate normal distribution, concentration ellipsoid. Sample from normal distribution. Chisquared, Student's t, F-distributions.

$9^{\text {th }}$ week

Weak law of large numbers. Almost sure convergence, convergence in distribution, convergence in probability, Lp convergence.
$10^{\text {th }}$ week
Kolmogorov's inequality. Kolmogorov's three-series theorem. Strong laws of large numbers.
$11^{\text {th }}$ week
Characteristic function and its properties. Inversion formulas. Continuity theorem
$12^{\text {th }}$ week
Central limit theorem. Law of the iterated logarithm. Arcsine laws.
$13^{\text {th }}$ week
Conditional distribution function, conditional density function, conditional expectation.
$14^{\text {th }}$ week
Comparison of the limit theorems.

Requirements:

- for a grade

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments of the course to each practice class. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

Students have to submit all the two designing tasks as scheduled minimum on a sufficient level.
During the semester there are two tests: the mid-term test in the $7^{\text {th }}$ week and the end-term test in the $14^{\text {th }}$ week. Students have to sit for the tests

Grades: 0-49\% fail (mark 1), 50-59\% satisfactory (mark 2), 60-69 \% average (mark 3), $70-84 \%$ good (mark 4), 85-100 excellent (mark 5), we use rounding up (e.g. 49.3% is satisfactory).

Person responsible for course: Dr. István Fazekas, university professor, DSc
Lecturer: Dr. István Fazekas, university professor, DSc

Title of course: Graph theory and applications

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: TTMME0106

Topics of course

Multiply connected graphs: Menger's theorems, edge-disjoint spanning trees. Graph colourings: chromatic number, greedy vertex colouring, Brooks' theorem, Mycielski construction, perfect graphs, chromatic polynomial, chromatic index, Vizing-theorem. Independence and covering: Gallai's theorems, Kőnig's theorem, Hall's theorem, perfect mathchings in bipartite and in arbitrary graphs, augmenting path method. Extremal graph theory: Mantel's theorem, Turán's theorem. Friendship theorem, strongly regular graphs. Planar graphs, crossing number. Directed paths and cycles in directed graphs, tournaments.

Literature

Compulsory:

Recommended:

J. A. Bondy, U. S. R. Murty: Graph Theory, Springer, 2008.

Schedule:

$I^{\text {st }}$ week

Overview of fundamentals of graph theory.
$2^{\text {nd }}$ week
Multiply connected graphs, vertex- and edge-connectivity. Menger's theorems, Dirac's theorem.
$3^{\text {rd }}$ week
2-vertex-connected and 2-edge connected graphs. Edge disjoint spanning trees.
$4^{\text {th }}$ week
Chromatic number, greedy colouring, Brooks' theorem. Mycielski construction.
$5^{\text {th }}$ week
Perfect graphs, examples and theorems. Chromatic polynomial, properties.
$6^{\text {th }}$ week

Chromatic index, Vizing's theorem. List chromatic number, list chromatic index, total chromatic number.
$7^{\text {th }}$ week
Independence and coverings, Gallai's theorems, Kőnig's theorem.
$8^{\text {th }}$ week
Hall's theorem, perfect matchings in bipartite graphs, chromatic index of bipartite graphs. Tutte's and Petersen's theorems on perfect matchings.
$9^{\text {th }}$ week
Augmenting path method for finding maximum matchings, Hungarian method. Dominating vertex sets.
$10^{\text {th }}$ week
Extremal graph theory, Mantel's and Turán's theorems.
$11^{\text {th }}$ week
Friendship theorem, strongly regular graphs.
$12^{\text {th }}$ week
Planar graphs, crossing number. Complexity of graph theoretical problems.
$13^{\text {th }}$ week
Directed paths and cycles in directed graphs. Gallai-Roy theorem, Stanley's theorem.
$14^{\text {th }}$ week
Tournaments, Landau's theorem, directed Hamiltonian paths and cycles in tournaments.

Requirements:

- for a signature

If the student fail the course TTMME0104, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Gábor Nyul, assistant professor, PhD
Lecturer: Dr. Gábor Nyul, assistant professor, PhD

Title of course: Graph theory and applications

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Multiply connected graphs: Menger's theorems, edge-disjoint spanning trees. Graph colourings: chromatic number, greedy vertex colouring, Brooks' theorem, Mycielski construction, perfect graphs, chromatic polynomial, chromatic index, Vizing-theorem. Independence and covering: Gallai's theorems, Kőnig's theorem, Hall's theorem, perfect mathchings in bipartite and in arbitrary graphs, augmenting path method. Extremal graph theory: Mantel's theorem, Turán's theorem. Friendship theorem, strongly regular graphs. Planar graphs, crossing number. Directed paths and cycles in directed graphs, tournaments.

Literature

Compulsory:
Recommended:
J. A. Bondy, U. S. R. Murty: Graph Theory, Springer, 2008.

Schedule:

$I^{\text {st }}$ week
Elementary exercises from graph theory.
$2^{\text {nd }}$ week
Vertex- and edge-connectivity of graphs.
$3^{\text {rd }}$ week
Chromatic number, greedy colouring.
$4^{\text {th }}$ week
Mycielski construction, perfect graphs.
$5^{\text {th }}$ week
Chromatic polynomial.
$6^{\text {th }}$ week

Chromatic index.
$7^{\text {h }}$ week
First test.
$8^{\text {th }}$ week
Maximum independent vertex and edge sets, minimum vertex and edge covers.
$9^{\text {th }}$ week
Augmenting path method, Hungarian method.
$10^{\text {th }}$ week
Perfect matchings.
$11^{\text {th }}$ week
Minimum dominating vertex sets.
$12^{\text {th }}$ week
Strongly regular graphs. Crossing number.
$13^{\text {th }}$ week
Topological ordering in directed graphs. Tournaments.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Gábor Nyul, assistant professor, PhD
Lecturer: Dr. Gábor Nyul, assistant professor, PhD

Title of course: Algorithms in mathematics

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMME0104
Further courses built on it: -

Topics of course

Representing graphs, breadth-first search and depth-first search, finding minimal spanning trees: Kruskal's, Prim's and Boruvka's algorithms. The Bellman-Ford-algorithm. Dijkstra's algorithm. Structure of shortest paths: Floyd-Warshall-algorithm. Transitive closure of directed graphs, Johnson's algorithm on sparse graphs. Representing polynomials: discrete and fast Fouriertransformation. Number theoretical algorithms: Euclidean algorithm, operations with residue classes, Chinese remainder theorem. Computing powers. Prime tests, factorizing integers. Random prime tests, Agrawal-Kayal-Saxena prime test. Pollard's rho-algorithm.

Literature

Compulsory:

Recommended:

Herbert S. Wilf: Algorithms and Complexity, electronic edition, 1994.

Schedule:

$I^{\text {st }}$ week
Representing graphs (adjacency list and adjacency matrix representation), breadth-first search. Shortest path distance of two vertices, breadth-first trees.
$2^{\text {nd }}$ week
Depth-first search, predecessor subgraph, depth-first forest, timestamps. Properties of depth-first search. Classification of edges.
$3^{\text {rd }}$ week
Topological sort of graphs. Strongly connected component, component graph. Properties of strongly connected components.
$4^{\text {th }}$ week
Search for Minimum Spanning Trees, growing a Minimum Spanning Tree. The algorithms of Kruskal and Prim.

$5^{\text {th }}$ week

The problem of Single-Source Shortest Paths. Optimal substructure of a shortest path. Representing shortest paths (predecessor subgraph). Relaxation. Properties of shortest paths and relaxation.
$6^{\text {th }}$ week
The Bellman-Ford algorithm. The correctness and running time of the Bellman-Ford algorithm. The Dijkstra algorithm. The correctness and running time of the Dijkstra algorithm.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
All-Pairs Shortest Paths. Shortest paths and matrix multiplication. The structure of shortest paths. The Floyd-Warshall algorithm.
$9^{\text {th }}$ week
Transitive closure of a directed graph. Johnson's algorithm for sparse graphs.
$10^{\text {th }}$ week
Sorting networks. Comparison networks. The zero-one principle. A bitonic sorting network. A merging network.
$11^{\text {th }}$ week
Representation of polynomials. The Discrete Fourier Transformed and the Fast Fourier Transformation algorithm. An efficient realization of the FFT.
$12^{\text {th }}$ week
Number Theoretical Algorithms. Euclidean algorithm, operations with residue classes, the Chinese Remainder Theorem. Fast exponentiation.
$13^{\text {th }}$ week
Prime-testing and prime-factorization. Probabilistic prime testing algorithms. The Agrawal-Kayal-Saxena prime test. The Pollard rho-factorization.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

If the student fail the course TTMMG0106, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	$\operatorname{good}(4)$
$86-100$	excellent (5)

-an offered grade:

It is possible to obtain an offered grade on the basis of two written test during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)

$61-70$	satisfactory (3)
$71-85$	$\operatorname{good}(4)$
$86-100$	excellent (5)

Person responsible for course: Prof. Dr. Attila Bérczes, university professor, DSc
Lecturer: Prof. Dr. Attila Bérczes, university professor, DSc

Title of course: Algorithms in mathematics

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): TTMME0104
Further courses built on it: -

Topics of course

Representing graphs, breadth-first search and depth-first search, finding minimal spanning trees: Kruskal's, Prim's and Boruvka's algorithms. The Bellman-Ford-algorithm. Dijkstra's algorithm. Structure of shortest paths: Floyd-Warshall-algorithm. Transitive closure of directed graphs, Johnson's algorithm on sparse graphs. Representing polynomials: discrete and fast Fouriertransformation. Number theoretical algorithms: Euclidean algorithm, operations with residue classes, Chinese remainder theorem. Computing powers. Prime tests, factorizing integers. Random prime tests, Agrawal-Kayal-Saxena prime test. Pollard's rho-algorithm.

Literature

Compulsory:

Recommended:

Herbert S. Wilf: Algorithms and Complexity, electronic edition, 1994.

Schedule:

$l^{s t}$ week
Representation of graphs in computer algebra systems. Programming the breadth-first search.
$2^{\text {nd }}$ week
Programming the depth-first search.
$3^{\text {rd }}$ week
Programming the Kruskal algorithm.
$4^{\text {th }}$ week
Programming the Prim algorithm.
$5^{\text {th }}$ week
Programming the Bellmann-Ford algorithm.
$6^{\text {th }}$ week

Programming the Dijkstra algorithm.
$7^{\text {th }}$ week
Programming the Floyd-Warshall algorithm.
$8^{\text {th }}$ week
Programming the Johnson algorithm.
$9^{\text {th }}$ week
Programming sorting networks.
$10^{\text {th }}$ week
Programming the Fast Fourier Transform algorithm.
$11^{\text {th }}$ week
Programming the Euclidean algorithm and the fast exponentiation.
$12^{\text {th }}$ week
Programming the Miller-Rabin test.
$13^{\text {th }}$ week
Programming the Pollard rho-factorization.
$14^{\text {th }}$ week
Programming the Agrawal-Kayal-Saxena prime test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-85$	good (4)
$86-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the test is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Prof. Dr. Attila Bérczes, university professor, DSc
Lecturer: Prof. Dr. Attila Bérczes, university professor, DSc

Title of course: Convex optimization

Type of teaching, contact hours

- lecture: 2 hours/week
- practice:
- laboratory:

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester:
Its prerequisite(s): TTMMG0205
Further courses built on it: -

Topics of course

Hull operations and their representations. The Stone-Kakutani separation theorem. Algebraic interior and algebraic closure. The intersection of the algebraic closure of complementary convex sets; separation of convex sets by linear functions. The Dubovickij-Miljutin theorem and its consequences. The Bernstein-Doetsch theorem for linear functions; the topological form of the separation theorems. Convex and sublinear functions; the maximum theorem and its consequences. Subgradient and directional derivative of convex functions. Rules of calculus. The BernsteinDoetsch theorem for convex functions. Distance function, tangent cone, normal cone. The minimum of convex conditional extremum problems; primal and dual conditions. The convex Fermat principle. Penalty function. The Karush-Kuhn-Tucker theorem and its consequence. Slater condition and Slater theorem.

Literature

Compulsory:

T. R. Rockafellar: Convex Analysis, Princeton University Press, Princenton, N. J., 1970.
J. M. Borwein and A. S. Lewis: Convex Analysis and Nonlinear Optimization, CMS Books in Mathematics, Springer, New York, 2006.

Recommended: -

Schedule:

$1^{\text {st }}$ week
Hull operations and their representations. The Stone-Kakutani separation theorem.
$2^{\text {nd }}$ week
Algebraic interior and algebraic closure. The intersection of the algebraic closure of complementary convex sets.
$3^{\text {rd }}$ week
Separation of convex sets by linear functions.
$4^{\text {th }}$ week
The Dubovitsky-Milyutin theorem and its consequences.

```
5th week
The Bernstein-Doetsch theorem for linear functions.
6
The topological form of the separation theorems.
7th}\mathrm{ week
Convex and sublinear functions.
8th}\mathrm{ week
The maximum theorem and its consequences.
9th}\mathrm{ week
Subgradient and directional derivative of convex functions.
10th week
The Bernstein-Doetsch theorem for convex functions.
11 th week
Distance function, tangent cone, normal cone.
12 th week
The minimum of convex conditional extremum problems; primal and dual conditions.
13}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ week
The convex Fermat principle. Penalty function. The Karush-Kuhn-Tucker theorem and its
consequence.
14th}\mathrm{ week
Slater condition and Slater theorem.
```


Requirements:

The course ends in an oral or written examination. Two assay questions are chosen randomly from the list of assays. In case one of them is incomplete, the examination ends with a fail. In lack of the knowledge of proofs, at most satisfactory can be achieved. The grade for the examination is given according to the following table:

```
Score Grade
0-59% fail (1)
60-69% pass (2)
70-79% satisfactory (3)
80-89% good (4)
90-100% excellent (5)
In general, the EDUCATION AND EXAMINATION RULES AND REGULATIONS have to be
taken into account.
```

Person responsible for course: Dr. Mihály Bessenyei, associate professor, PhD
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD

Title of course: Convex optimization
Code: TTMMG0205
Type of teaching, contact hours

- lecture:
- practice: 2 hours/week
- laboratory:

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: -

Total: 60 hours
Year, semester: odd semesters
Its prerequisite(s): -

Further courses built on it: -

Topics of course

Hull operations and their representations. The Stone-Kakutani separation theorem. Algebraic interior and algebraic closure. The intersection of the algebraic closure of complementary convex sets; separation of convex sets by linear functions. The Dubovickij-Miljutin theorem and its consequences. The Bernstein-Doetsch theorem for linear functions; the topological form of the separation theorems. Convex and sublinear functions; the maximum theorem and its consequences. Subgradient and directional derivative of convex functions. Rules of calculus. The BernsteinDoetsch theorem for convex functions. Distance function, tangent cone, normal cone. The minimum of convex conditional extremum problems; primal and dual conditions. The convex Fermat principle. Penalty function. The Karush-Kuhn-Tucker theorem and its consequence. Slater condition and Slater theorem.

Literature

Compulsory:

T. R. Rockafellar: Convex Analysis, Princeton University Press, Princenton, N. J., 1970.
J. M. Borwein and A. S. Lewis: Convex Analysis and Nonlinear Optimization, CMS Books in Mathematics, Springer, New York, 2006.
Recommended: -

Schedule:

$I^{\text {st }}$ week
Linear subspaces, affine subspaces, convex cones, convex subsets in linear spaces.
$2^{\text {nd }}$ week
Linear and sublinear functions, affine functions and convex functions.
$3^{\text {rd }}$ week
Linear hull, affine hull, cone hull and convex hull in finite dimension. The drop theorem.
$4^{\text {th }}$ week
Linear hull, affine hull, cone hull and convex hull in infinite dimension.
$5^{\text {th }}$ week
Polyhedrons and polytopes in finite dimension.
$6^{\text {th }}$ week
Algebraic interior, algebraic open sets. Convex sets in topological vector spaces.
$7^{\text {th }}$ week
Mid-term test.
$8^{\text {th }}$ week
Separation of convex sets with linear mapping.
$9^{\text {th }}$ week
Directional derivative of convex functions. Calculus with respect to convex cones. The maximum function.
$10^{\text {th }}$ week
Subgradients of convex functions.
$11^{\text {th }}$ week
Extrema via Lagrange multipliers.
$12^{\text {th }}$ week
Applications of the Karush-Kuhn-Tucker theorem.
$13^{\text {th }}$ week
Applications of the Karush-Kuhn-Tucker theorem.
$14^{\text {th }}$ week
End-term test.

Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor.

The course finishes with a grade, which is based on the total sum of points of the mid-term test (in the $7^{\text {th }}$ week) and the end-term test (in the $14^{\text {th }}$ week). One of the test can be repeated. The final grade is given according to the following table:

Score	Grade
$0-59 \%$	fail (1)
$60-69 \%$	pass (2)
$70-79 \%$	satisfactory (3)
$80-89 \%$	good (4)
$90-100 \%$	excellent (5)

In general, the EDUCATION AND EXAMINATION RULES AND REGULATIONS have to be taken into account.

Person responsible for course: Dr. Mihály Bessenyei, associate professor, PhD
Lecturer: Dr. Mihály Bessenyei, associate professor, PhD

Title of course: Discrete optimization

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s):
Further courses built on it:

Topics of course

Theoretical background of discrete optimization problems. Totally unimodular matrices, integer linear programming, Hoffman-Kruskal theorem. Assignment problem, quadratic assignment problem, set covering problem, Chinese postman problem, travelling salesman problem, Steinertree problem, bin packing problem. Max flow-min cut problem, Ford-Fulkerson theorem, Edmonds-Karp theorem. Greedy algorithm for downward closed family of sets, matroids.

Literature

Compulsory:

-

Recommended:

Bernhard Korte, Jens Vygen: Combinatorial Optimization, Springer-Verlag, 2006.
Dieter Jungnickel: Graphs, Networks and Algorithms, Springer-Verlag, 2008.
Vijay V. Vazirani: Approximation Algorithms, Springer-Verlag, 2001.

Schedule:

$I^{\text {st }}$ week
Theoretical background of discrete optimization problems, general methods: exhaustive search, branch and bound method, suboptimal algorithms.
$2^{\text {nd }}$ week
Totally unimodular matrices, elementary properties, equivalents, examples (incidence matrices of directed and bipartite graphs, interval matrices), Heller's theorem.
$3^{\text {rd }}$ week
Linear programming, integer linear programming, Hoffman-Kruskal theorem. Graph theoretical problems using integer linear programming (independent vertex and edge sets, vertex and edge cover).
$4^{\text {th }}$ week
Assignment problem, Hungarian method. Quadratic assignment problem.
$5^{\text {th }}$ week
Unweighted and weighted vertex cover problem, suboptimal algorithms.
$6^{\text {th }}$ week
Set cover problem, Chvátal's method.
$7^{\text {th }}$ week
Chinese postman problem, method.
$8^{\text {th }}$ week
Travelling salesman problem, metric and nonmetric variants, suboptimal methods in the metric case, Christofides' method.
$9^{\text {th }}$ week
Steiner tree problem, suboptimal method.
$10^{\text {th }}$ week
Bin packing problem, NF, FF, FFD methods.
$11^{\text {th }}$ week
Networks and flows, maximum flow-minimum cut problem, Ford-Fulkerson theorem.
$12^{\text {th }}$ week
Ford-Fulkerson method, integer capacities, Edmonds-Karp theorem. Maximum flow-minimum cut problems and linear programming.
$13^{\text {th }}$ week
Networks with multiple sources and sinks, networks with maximal capacity. The Ford-Fulkerson theorem and its theoretical consequences.
$14^{\text {th }}$ week
Greedy algorithm for downward closed set systems, matroids, examples.

Requirements:

- for a signature

If the student fail the course TTMMG0107, then the signature is automatically denied.

- for a grade

The course ends in oral examination. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Gábor Nyul, assistant professor, PhD
Lecturer: Dr. Gábor Nyul, assistant professor, PhD

Title of course: Discrete optimization

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory:

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: -
- preparation for the exam: 32 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Theoretical background of discrete optimization problems. Totally unimodular matrices, integer linear programming, Hoffman-Kruskal theorem. Assignment problem, quadratic assignment problem, set covering problem, Chinese postman problem, travelling salesman problem, Steinertree problem, bin packing problem. Max flow-min cut problem, Ford-Fulkerson theorem, Edmonds-Karp theorem. Greedy algorithm for downward closed family of sets, matroids.

Literature

Compulsory:

Recommended:

Bernhard Korte, Jens Vygen: Combinatorial Optimization, Springer-Verlag, 2006.
Dieter Jungnickel: Graphs, Networks and Algorithms, Springer-Verlag, 2008.
Vijay V. Vazirani: Approximation Algorithms, Springer-Verlag, 2001.

Schedule:

$I^{\text {st }}$ week
Basic graph algorithms.
$2^{\text {nd }}$ week
PERT method, critical paths.
$3^{\text {rd }}$ week
Totally unimodular matrices.
$4^{\text {th }}$ week
Linear programming. Rearrangement theorem.
$5^{\text {th }}$ week
Assignment problem.
$6^{\text {th }}$ week

Set cover problem.
$7^{\text {th }}$ week
First test.
$8^{\text {th }}$ week
Chinese postman problem.
$9^{\text {th }}$ week
Travelling salesman problem.
$10^{\text {th }}$ week
Steiner tree problem. Bin packing problem.
$11^{\text {th }}$ week
Networks and flows.
$12^{\text {th }}$ week
Maximum flow-minimum cut problem, Ford-Fulkerson method.
$13^{\text {th }}$ week
Generalized networks.
$14^{\text {th }}$ week
Second test.

Requirements:

- for a signature

Attendance of classes are compulsory with the possibility of missing at most three classes during the semester. In case of further absences, a medical certificate needs to be presented, otherwise the signature is denied.

- for a grade

The course is evaluated on the basis of two written tests during the semester. The grade is given according to the following table:

Total Score (\%)	Grade
$0-50$	fail (1)
$51-60$	pass (2)
$61-70$	satisfactory (3)
$71-80$	good (4)
$81-100$	excellent (5)

If a student fail to pass at first attempt, then a retake of the tests is possible.
-an offered grade:
It is not possible to obtain an offered grade in this course.
Person responsible for course: Dr. Gábor Nyul, assistant professor, PhD
Lecturer: Dr. Gábor Nyul, assistant professor, PhD

Title of course: Application of ordinary differential equations

ECTS Credit points: 3

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice:
- laboratory: -
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Autonomous systems of differential equations and their phase spaces. Stability of differencial equations, the theorems of Lyapunov, the direct method of Lyapunov. Boundary value problems and eigenvalue problems. Green function. Existence and uniqueness theorems. Maximum and minimum principles. Nonlinear boundary value problems. Sturm-Liouville eigenvalue problems. Rotationally symmetric elliptic problems. Diffeomorphisms and their symmetries. The application of the one-parameter symmetry group to integration of equations. Calculus of variations, the EulerLagrange differential equations, the invariance of the Euler-Lagrange differential equations, the canonical form of the Euler-Lagrange differential equations, the first integrals of the EulerLagrange differential equations. The Noether theorem. Principle of the least action.

Literature

Compulsory: -

Recommended:

[1] V. I. Arnol'd, Ordinary differential equations, Translated from the Russian by Roger Cooke. Second printing of the 1992 edition. Universitext. Springer-Verlag, Berlin, 2006. ii +334 pp. ISBN: 978-3-540-34563-3;
[2] V. I. Arnol'd, Mathematical methods of classical mechanics. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. xvi+516 pp. ISBN: 0-387-96890-3
[3] V. I. Arnol'd, Geometrical methods in the theory of ordinary differential equations. Translated from the Russian by Joseph Szücs [József M. Szücs]. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 250. Springer-Verlag, New York, 1988. xiv+351 pp. ISBN: 0-387-96649-8 [4] B. Dacorogna, Introduction to the calculus of variations, 2nd ed., London: Imperial College Press,
2008.
[5] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Studies in Mathematics and its Applications, 6. North-Holland Publishing Co., Amsterdam-New York, 1979. [6] W. Walter, Gewöhnliche Differentialgleichungen - Eine Einfürung, 7. Auflage, Springer, 2000.

Schedule:

$1^{\text {st }}$ week

Autonomous differential equations and their phase spaces: Autonomous systems of ordinary differential equations, phase spaces, equilibrium point, cycles.
$2^{\text {nd }}$ week
Stability theory of ordinary differential equations, Theorems of Lyapunov.
$3^{\text {rd }}$ week
The direct method of Lyapunov.
$4^{\text {th }}$ week
Boundary value problems and eigenvalue problems, Sturm eigenvalue problems, fundamental solutions, the Green function.
$5^{\text {th }}$ week
Non-linear boundary value problems, minimum and maximum principles.
$6^{\text {th }}$ week
Sturm-Liouville eigenvalue problems, spherical symmetric solutions of elliptic partial differential equations.
$7^{\text {th }}$ week
One-parameter transformations groups, one-parameter diffeomorphism groups.
$8^{\text {th }}$ week
Actions of diffeomorphisms on vector fields, symmetries, the Rectification Theorem.
$9^{\text {th }}$ week
Variations of functionals, bilinear and quadratic functionals, second order variations of functionals.
$10^{\text {th }}$ week
Extrema of functionals, the Euler-Lagrange equations.
$11^{\text {th }}$ week
Invariance of the Euler-Lagrange differential equations, canonical form of the Euler-Lagrange differential equations, first integrals of the Euler-Lagrange differential equations.
$12^{\text {th }}$ week
The Theorem of Noether, the Principle of the least action.
$13^{\text {th }}$ week
Sufficient conditions for the extrema, solutions to the most classical problems in the theory of calculus of variations.
$14^{\text {th }}$ week
Calculus of variations for multivariate functions, derivation of the most classical second order partial differential equations (Laplace equation, wave equation, heat equation, minimal surface equation)

Requirements:

Attendance at lectures is recommended, but not compulsory.
The course ends in an oral examination.

Person responsible for course: Dr. Eszter Novák-Gselmann, assistant professor, PhD
Lecturer: Dr. Eszter Novák-Gselmann, assistant professor, PhD

Title of course: Application of ordinary differential equations
ECTS Credit points: 2

Type of teaching, contact hours

- lecture: -
- practice: 2 hours/week
- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture:
- practice: 28 hours
- laboratory: -
- home assignment: 32 hours
- preparation for the exam: -

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Autonomous systems of differential equations and their phase spaces. Stability of differencial equations, the theorems of Lyapunov, the direct method of Lyapunov. Boundary value problems and eigenvalue problems. Green function. Existence and uniqueness theorems. Maximum and minimum principles. Nonlinear boundary value problems. Sturm-Liouville eigenvalue problems. Rotationally symmetric elliptic problems. Diffeomorphisms and their symmetries. The application of the one-parameter symmetry group to integration of equations. Calculus of variations, the EulerLagrange differential equations, the invariance of the Euler-Lagrange differential equations, the canonical form of the Euler-Lagrange differential equations, the first integrals of the EulerLagrange differential equations. The Noether theorem. Principle of the least action.

Literature

Compulsory: -

Recommended:

[1] V. I. Arnol'd, Ordinary differential equations, Translated from the Russian by Roger Cooke. Second printing of the 1992 edition. Universitext. Springer-Verlag, Berlin, 2006. ii +334 pp. ISBN: 978-3-540-34563-3;
[2] V. I. Arnol'd, Mathematical methods of classical mechanics. Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. xvi+516 pp. ISBN: 0-387-96890-3
[3] V. I. Arnol'd, Geometrical methods in the theory of ordinary differential equations. Translated from the Russian by Joseph Szücs [József M. Szücs]. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 250. Springer-Verlag, New York, 1988. xiv+351 pp. ISBN: 0-387-96649-8 [4] B. Dacorogna, Introduction to the calculus of variations, 2nd ed., London: Imperial College Press, 2008.
[5] A. D. Ioffe, V. M. Tihomirov, Theory of extremal problems, Studies in Mathematics and its Applications, 6. North-Holland Publishing Co., Amsterdam-New York, 1979. [6] W. Walter, Gewöhnliche Differentialgleichungen - Eine Einfürung, 7. Auflage, Springer, 2000.

Schedule:

$1^{\text {st }}$ week
Autonomous differential equations and their phase spaces: Autonomous systems of ordinary differential equations, phase spaces, equilibrium point, cycles.
$2^{\text {nd }}$ week
Stability theory of ordinary differential equations, Theorems of Lyapunov.
$3^{\text {rd }}$ week
The direct method of Lyapunov.
$4^{\text {th }}$ week
Boundary value problems and eigenvalue problems, Sturm eigenvalue problems, fundamental solutions, the Green function.
$5^{\text {th }}$ week
Non-linear boundary value problems, minimum and maximum principles.
$6^{\text {th }}$ week
Sturm-Liouville eigenvalue problems, spherical symmetric solutions of elliptic partial differential equations.
$7^{\text {th }}$ week
One-parameter transformations groups, one-parameter diffeomorphism groups, Actions of diffeomorphisms on vector fields, symmetries, the Rectification Theorem.
$8^{\text {th }}$ week
Variations of functionals, bilinear and quadratic functionals, second order variations of functionals.
$9^{\text {th }}$ week
Extrema of functionals, the Euler-Lagrange equations.
$10^{\text {th }}$ week
Invariance of the Euler-Lagrange differential equations, canonical form of the Euler-Lagrange differential equations, first integrals of the Euler-Lagrange differential equations.
$11^{\text {th }}$ week
The Theorem of Noether, the Principle of the least action.
$12^{\text {th }}$ week
Sufficient conditions for the extrema, solutions to the most classical problems in the theory of calculus of variations.
$13^{\text {th }}$ week
Calculus of variations for multivariate functions, derivation of the most classical second order partial differential equations (Laplace equation, wave equation, heat equation, minimal surface equation)
$14^{\text {th }}$ week
Test writing

Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student's behaviour does not meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there is one written test, in the $14^{\text {th }}$ week.

The minimum requirement for the test is 66%. The grade for the tests is given according to the following table:

Score	Grade
$0-65$	fail (1)
$66-69$	pass (2)
$70-80$	satisfactory (3)
$81-90$	good (4)
$91-100$	excellent (5)

If the score of the test is below 66%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Eszter Novák-Gselmann, assistant professor, PhD
Lecturer: Dr. Eszter Novák-Gselmann, assistant professor, PhD.

Title of course: Partial differential equations
 Code: TTMME0204

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s):
Further courses built on it: -

Topics of course

Examples in physics. First order equations: homogeneous linear equations, quasilinear equations and Cauchy problem for general equations. Higher order equations, the Cauchy-Kovalevskaya theorem. Classification and canonical form of second order equations. One, two and three dimensional wave equation. Inhomogeneous wave equation. The Laplace and Poisson equation, Green functions, harmonic functions, maximum principle. Boundary value problem for the Laplace and Poisson equations. The heat equation. Sobolev spaces, weak solutions.

Literature
 Compulsory: -

Recommended:

- V. I. Arnold: Lectures on Partial Differential Equations, Springer, Berlin, 2004.

Schedule:

$I^{s t}$ week Introduction. Examples in physics. Main types of partial differential equations.
$2^{\text {nd }}$ week First order equations: first integrals of ordinary differential equations, homogeneous linear first order partial differential equations
$3^{\text {rd }}$ week First order quasilinear equations and Cauchy problems for general first order equations.
$4^{\text {th }}$ week Higher order equations, the Cauchy-Kovalevskaya theorem. Classification of second order equations.
$5^{\text {th }}$ week Canonical form of second order linear equations with constant coefficients.
$6^{\text {th }}$ week Canonical form of two dimensional second order semilinear equations.
$7^{\text {th }}$ week One dimensional wave equation: the equation on the real line. Initial value problem on the real line, initial and boundary value problem on bounded intervals.
$8^{\text {th }}$ week Initial value problem for the two and three dimensional wave equation. Inhomogeneous wave equation.
$9^{\text {th }}$ week Basic solutions of the Poisson equation. Green functions.
$10^{\text {th }}$ week Poisson formula, harmonic functions, maximum principle, monotonicity principle.
$11^{\text {th }}$ week Boundary value problem for the Laplace and Poisson equations.
$12^{\text {th }}$ week Heat kernel, initial value problem for the heat equation.
$13^{\text {th }}$ week Weak derivative, Sobolev spaces, Friedrichs-inequality, equivalent norms.
$14^{\text {th }}$ week Weak solutions of the Poisson equation, the Lax-Milgram lemma.

Requirements:

- for a grade

The course ends in an examination. The minimum requirement for the examination is 50\%. Based on the score of the exam the grade for the examination is given according to the following table

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-89$	good (4)
$90-100$	excellent (5)

Person responsible for course: Dr. Borbála Fazekas, assistant professor, PhD
Lecturer: Dr. Borbála Fazekas, assistant professor, PhD

Title of course: Partial differential equations Code: TTMMG0204	ECTS Credit points: 2
Type of teaching, contact hours - lecture: - - practice: 2 hours/week - laboratory: -	
Evaluation: mid-semester grade	
Workload (estimated), divided into contact hours: - lecture: - - practice: 28 hours - laboratory: - - home assignment: - - preparation for the exam: 32 hours Total: 60 hours	
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester	
Its prerequisite(s):	
Further courses built on it: -	

Topics of course

Examples in physics. First order equations: homogeneous linear equations, quasilinear equations and Cauchy problems for general equations. Higher order equations, the Cauchy-Kovalevskaya theorem. Classification and canonical form of second order equations. One, two and three dimensional wave equation. Inhomogeneous wave equation. The Laplace and Poisson equation, Green functions, harmonic functions, maximum principle. Boundary value problem for the Laplace and Poisson equations. The heat equation. Sobolev spaces, weak solutions.

Literature
 Compulsory: -

Recommended:

- V. I. Arnold: Lectures on Partial Differential Equations, Springer, Berlin, 2004.

Schedule:

$1^{s t}$ week Introduction. Examples in physics. Main types of partial differential equations.
$2^{\text {nd }}$ week First order equations: first integrals of ordinary differential equations, homogeneous linear first order partial differential equations.
$3^{\text {rd }}$ week First order quasilinear equations and Cauchy problem for general first order equations.
$4^{\text {th }}$ week Higher order equations, the Cauchy-Kovalevskaya theorem. Classification of second order equations.
$5^{\text {th }}$ week Canonical form of second order linear equations with constant coefficients.
$\sigma^{\text {th }}$ week Canonical form of two dimensional second order semilinear equations.
$7^{\text {th }}$ week One dimensional wave equation: the equation on the real line. Initial value problem on the real line, initial and boundary value problém on bounded intervals.
$8^{\text {th }}$ week Initial value problem for the two and three dimensional wave equation. Inhomogeneous wave equation.
$9^{\text {th }}$ week Basic solutions of the Poisson equation. Green functions.
$10^{\text {th }}$ week Poisson formula, harmonic functions, maximum principle, monotonicity principle.
$11^{\text {th }}$ week Boundary value problem for the Laplace and Poisson equations.
$12^{\text {th }}$ week Heat kernel, initial value problem for the heat equation.
$13^{\text {th }}$ week Weak derivative, Sobolev spaces, Friedrichs-inequality, equivalent norms. Weak solutions of the Poisson equation, the Lax-Milgram lemma.
$14^{\text {th }}$ week Test

Requirements:

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.
During the semester there are two tests: one test in the $7^{\text {th }}$ week and the other test in the $14^{\text {th }}$ week. The minimum requirement for the tests respectively is 50%. Based on the score of the tests, the grade for the tests is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-89$	good (4)
$90-100$	excellent (5)

If the score of any test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
Person responsible for course: Dr. Borbála Fazekas, assistant professor, PhD
Lecturer: Dr. Borbála Fazekas, assistant professor, PhD

Title of course: Stochastic processes

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): none
Further courses built on it: -

Topics of course

General notion of conditional expected value, discrete and continuous time Markov chains, discrete time martingales, Wiener processes, stochastic integration with Wiener process (Itô integral), Itô's formula, stochastic differential equations, diffusion processes.

Literature

Compulsory:

- I. Karatzas, S. E. Shreve: Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991.
- N. Shiryayev: Probability, 2nd edition, Springer-Verlag, 1995.

Recommended:

- S. M. Ross: Introduction to Probability Models, 10th edition, Academic Press, 2009.

Schedule:

$I^{s t}$ week
Conditional expected value with respect to sigma algebra: definition, existence, Jensen-inequality, tower rule, Fatou-lemma, monotone dominated convergence theorem.
$2^{\text {nd }}$ week
Definition of stochastic processes, independent increments, stationary increments, finite dimensional distributions of a stochastic process, expected value function, covariance function, cylender sets, Kolmogorov existence theorem.
$3^{\text {rd }}$ week
Discrete time Markov-chain: definition, existence theorem of Markov-chains, initial distribution, transition probability matrix, Kolmogorov-Chapman equations.
$4^{\text {th }}$ week
Simulation of Markov-chains knowing the initial distributions and transition probabilities, classification of states of a Markov-chain.
$5^{\text {th }}$ week

Discrete time Markov-chain: accessibility, essential states, inessential states, closeness, irreducibility, periodicity, recurrence, criteria of recurrence, stacionarity, ergodicity, convergence of transition probabilities
$6^{\text {th }}$ week
Discrete time martingales: definition, the basic probabilities, Doob's decomposition theorem, stopping time, optional stopping theorem.
$7^{\text {th }}$ week
Discrete time martingales: Wald-identity, Doob's martingale maximal inequalities, convergence of martingales and submartingales.
$8^{\text {th }}$ week
Continuous time Markov-chains: transition probabilities functions, Kolmogorov-Chapman equalities, standardization, infinitesimal generators/matrices and its interpretation, conservation, system of backward and forward Kolmogorov differential equations.
$9^{\text {th }}$ week
Continuous time Markov-chains: recurrence, asymptotic behaviour of transition probabilities, ergodic and null-states, stationary distribution, birth and death processes, Karlin-McGregortheorem.
$10^{\text {th }}$ week
The existence of standard Wiener-processes, Kolmogorov continuity theorem, the basic properties of Wiener-processes, transition probability density function.
$11^{\text {th }}$ week
Definition and basic properties of Gaussian processes; Wiener-processes, as a special case of Gaussian processes, the hitting time, examination of bounded variation and differentiation.
$12^{\text {th }}$ week
Definition and basic properties of stochastic integral with respect to Wiener processes (Itôintegral).
$13^{\text {th }}$ week
Itô's formula and its applications to determine stochastic integrals.
$14^{\text {th }}$ week
Stochastic differential equations: strong and weak solutions; diffusion processes, examples (principally of the area of financial mathematics). Kolmogorov-equations.

Requirements:

The course ends in an examination. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:

- the average grade of the two designing tasks
- the result of the examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 50%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-69$	pass (2)
$70-79$	satisfactory (3)
$80-89$	good (4)
$90-100$	excellent (5)

If the score of any test is below 50, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Patricia Szokol, assistant professor, PhD
Lecturer: Prof. Dr. István Fazekas, university professor, DSc
Dr. Patricia Szokol, associate professor, PhD

Title of course: Stochastic processes

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 32 hours
- preparation for the exam:

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): none
Further courses built on it: -

Topics of course

General notion of conditional expected value, discrete and continuous time Markov chains, discrete time martingales, Wiener processes, stochastic integration with the Wiener process (Itô integral), Itô's formula, stochastic differential equations, diffusion processes.

Literature

Compulsory:

- I. Karatzas, S. E. Shreve: Brownian Motion and Stochastic Calculus, Springer-Verlag, 1991.
- N. Shiryayev: Probability, 2nd edition, Springer-Verlag, 1995.

Recommended:

- S. M. Ross: Introduction to Probability Models, 10th edition, Academic Press, 2009.

Schedule:

$l^{s t}$ week
Conditional expected value with respect to sigma algebra: examples to practice the definition, and the basic properties.
$2^{\text {nd }}$ week
Examples for stochastic processes; exercises to practice the notion of independent increments, stationary increments, finite dimensional distributions of a stochastic process; exercises to calculate expected value function and covariance function.
$3^{\text {rd }}$ week
Discrete time Markov-chains: examples and exercises to understand the definition and to practice initial distribution, transition probability matrix, Kolmogorov-Chapman equations.
$4^{\text {th }}$ week
Discrete time Markov-chains: exercises to practice the classification of states of Markov-chain. Simulation of Markov-chains using the statistical software R.
$5^{\text {th }}$ week

Discrete time Markov-chains: exercises to apply the criteria of recurrence, to determine the stationary distribution and to examine the ergodicity and the convergence of transition probabilities.
$6^{\text {th }}$ week
Discrete time martingales: exercises to practice the definition, basic probabilities and optional stopping theorem.
$7^{\text {th }}$ week
Discrete time martingales: exercises to practice the Wald-identity, the convergence of martingales and submartingales.
$8^{\text {th }}$ week
Continuous time Markov-chains: examples for infinitezimal generators and exercises to apply the system of backward and forward Kolmogorov differential equations.

$9^{\text {th }}$ week

Continuous time Markov-chains: exercises for the examination of the recurrance, asymptotic behaviour of transition probabilities, to practice the notion of the ergodic and null-states and to determine stationary distributions.
$10^{\text {th }}$ week
Exercises and examples for Wiener processes.
$11^{\text {th }}$ week
Examples and exercises for Gaussian processes and for hitting time of Wiener processes.
$12^{\text {th }}$ week
Examples and exercises for stochastic integral with respect to Wiener processes (Itô-integral). Itô's formula and its applications to determine stochastic integrals.
$13^{\text {th }}$ week
Examples and exercises for stochastic differential equations and for diffusion processes.
$14^{\text {th }}$ week
End-term test.

Requirements:

- for a grade

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments of the course to each practice class. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

Students have to submit all the two designing tasks as scheduled minimum on a sufficient level.
During the semester there are two tests: the mid-term test in the $7^{\text {th }}$ week and the end-term test in the $14^{\text {th }}$ week. Students have to sit for the tests

Grades: $0-49 \%$ fail (mark 1), $50-59 \%$ satisfactory (mark 2), 60-69 \% average (mark 3), 70$84 \%$ good (mark 4), 85-100 excellent (mark 5), we use rounding up (e.g. 49.3% is satisfactory).

Person responsible for course: Dr. Patricia Szokol, assistant professor, PhD
Lecturer: Prof. Dr. István Fazekas, university professor, DSc
Dr. Patricia Szokol, assistant professor, PhD

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: 22 hours
- preparation for the exam: 40 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s):
Further courses built on it: TTMME0904

Topics of course

Multivariate sample and its properties; principal component analysis; exploratory factor analysis; canonical correlation analysis; classification methods, cluster analysis; multidimensional scaling; support vector machines.

Literature

J. Izenman: Modern Multivariate Statistical Techniques. Regression, Classification and Manifold Learning, Springer, 2008.
N. H. Timm: Applied Multivariate Analysis, Springer, 2002.
B. Everitt, T. Hothorn: An Introduction to Applied Multivariate Analysis with R, Springer, 2011.
D. Zelterman: Applied Multivariate Statistics with R, Springer, 2015.

Schedule:

$l^{\text {st }}$ week
Multivariate sample and its empirical characteristics. Wishart distribution. Multivariate normal sample.
$2^{\text {nd }}$ week
Maximum-likelihood estimation of parameters of a multivariate normal sample. Hotelling's T-square test.
$3^{\text {rd }}$ week
Principal component analysis, properties of principal components.
$4^{\text {th }}$ week
Sample principal components. Scree plot, examples.
$5^{\text {th }}$ week
Fundamentals of exploratory factor analysis.
$6^{\text {th }}$ week
Estimation of parameters and testing of hypotheses in factor models. Factor rotation.
$7^{\text {th }}$ week

Canonical correlation analysis. Estimation of canonical factors.
$8^{\text {th }}$ week
Classification methods: maximum-likelihood and Bayes' decision. Estimation methods.
$9^{\text {th }}$ week
Logistic regression. Nearest neighbour method.
$10^{\text {th }}$ week
Cluster analysis: hierarchical methods, k-means clustering.
$11^{\text {th }}$ week
Multidimensional scaling: classical solution.
$12^{\text {th }}$ week
Nonmetric scaling. The Shepard-Kruskal algorithm.
$13^{\text {th }}$ week
Fundamentals of support vector machines.
$14^{\text {th }}$ week
Case studies.

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an oral examination, where the knowledge of practical applications is a fundamental requirement.

Person responsible for course: Dr. Sándor Baran, associate professor, PhD
Lecturer: Dr. Sándor Baran, associate professor, PhD

Title of course: Multivariate Analysis

```
- lecture: -
- practice: -
- laboratory: 2 hours/week
```

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: -
- laboratory: 28 hours
- home assignment: 32 hours
- preparation for the final test: -

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s):
Further courses built on it: -

Topics of course

Fundamentals of R; multivariate sample and its properties; principal component analysis; exploratory factor analysis; canonical correlation analysis; classification methods, cluster analysis; multidimensional scaling; support vector machines

Literature

B. Everitt, T. Hothorn: An Introduction to Applied Multivariate Analysis with R, Springer, 2011.
D. Zelterman: Applied Multivariate Statistics with R, Springer, 2015.

Schedule:

$I^{s t}$ week
Fundamentals of R, commands, data structures.
$2^{\text {nd }}$ week
Functions in R. Packaging.
$3^{\text {rd }}$ week
Multivariate sample, descriptive statistics.
$4^{\text {th }}$ week
Data visualization.
$5^{\text {th }}$ week
Principal component analysis with R. Case studies.
$6^{\text {th }}$ week
Exploratory factor analysis with R. Case studies.
$7^{\text {th }}$ week
Canonical correlation analysis. Case studies.
$8^{\text {th }}$ week
Classification methods: linear and quadratic discriminant analysis. Case studies.

```
9th}\mathrm{ week
Logistic regression. Case studies.
10,th}\mathrm{ week
Cluster analysis: hierarchical methods. Dendrograms, icicle plots. Case studies.
11 th week
K-means clustering. Case studies.
12 th week
Multidimensional scaling: classical solution. Case studies.
13 th week
Nonmetric scaling. The Shepard-Kruskal algorithm. Case studies.
144}\mathrm{ week
Fundamentals of support vector machines. Case studies.
```


Requirements:

```
- for a grade
Attendance of laboratories is compulsory. The course ends in a practical test.
\begin{tabular}{ll} 
Score & Grade \\
\(0-14\) & fail (1) \\
\(15-18\) & pass (2) \\
\(19-22\) & medium (3) \\
\(23-26\) & good (4) \\
\(27-30\) & excellent (5)
\end{tabular}
If the score of the test is below 15 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
```

Person responsible for course: Dr. Sándor Baran, associate professor, PhD
Lecturer: Dr. Sándor Baran, associate professor, PhD

Title of course: Option pricing

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -

Further courses built on it: -

Topics of course

The students get to know about the fundamental derivatives and their roles, the fundamentals of the mechanism of derivatives markets, the principles of pricing derivatives, the principle of arbitrage and how to apply it for pricing, some classical models and problems and methods related to their fitting and applications.

Literature

Compulsory:

- Hull, J. C.: Options, Futures and Other Derivatives, Pearson, 10th edition, 2018.

Recommended:

- Musiela, M. and Rutkowsky, M.: Martingale Methods in Financial Modelling, 2nd edition, Springer, 2005.

Schedule:

$l^{s t}$ week
Basic notions. Derivatives and their categories.
$2^{\text {nd }}$ week
Futures, forward contracts, standard options. Payoffs, profit. Examples.
$3^{\text {rd }}$ week
Notion of arbitrage. Pricing of futures. Forward price.
$4^{\text {th }}$ week
Differences of futures and forward contracts, pricing of special cases, examples.
$5^{\text {th }}$ week
Properties of option prices (factors affecting option prices, upper and lower bounds).
$6^{\text {th }}$ week
Put-call parity, early exercise. Elementary trading strategies (involving a single option and a stock).
$7^{\text {th }}$ week

Trading strategies involving options (spreads, combinations).
$8^{\text {th }}$ week
Option pricing in binary markets. Pricing of European options, hedging strategies, arbitrage-free
valuation.
$9^{\text {th }}$ week
Binary and binomial markets. Pricing of American optionns.
$10^{\text {th }}$ week
Introduction to continuous time models. Volatility, the basics of Black-Scholes markets.
$11^{\text {th }}$ week
The Black-Scholes formula, and its applications, implied volatility.
$12^{\text {th }}$ week
Classification of risks. Basics of market risk management.
$13^{\text {th }}$ week
Greeks, delta hedging.
$14^{\text {th }}$ week
Estimation of option prices, approximations.

Requirements:

The students get a grade based on a written exam.
Grades: $0-49 \%$ fail (mark 1), 50-59\% satisfactory (mark 2), 60-69 \% average (mark 3), 70$84 \% \operatorname{good}$ (mark 4), 85-100 excellent (mark 5), we use rounding up (e.g. 49.3% is satisfactory).

Person responsible for course: Dr. József Gáll, associate professor, PhD
Lecturer: Dr. József Gáll, associate professor, PhD

Title of course: Option pricing

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 16 hours
- preparation for the exam: 16 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): -

Further courses built on it: -

Topics of course

The students get to know about the fundamental derivatives and their roles, the fundamentals of the mechanism of derivatives markets, the principles of pricing derivatives, the principle of arbitrage and how to apply it, some classical models and problems and methods related to their fitting and applications.

Literature

Compulsory:

- Hull, J. C.: Options, Futures and Other Derivatives, Pearson, 10th edition, 2018.

Recommended:

- Musiela, M. and Rutkowsky, M.: Martingale Methods in Financial Modelling, 2nd edition, Springer, 2005.

Schedule:

$l^{s t}$ week
Derivatives and their categories.
$2^{\text {nd }}$ week
Futures, forward contracts, standard options. Payoffs, profit. Examples.
$3^{\text {rd }}$ week
Notion of arbitrage. Pricing of futures. Forward price.
$4^{\text {th }}$ week
Pricing of futures and forward contracts, special cases.
$5^{\text {th }}$ week
Examples of arbitrage. Properties of option prices (factors affecting option prices, upper and lower bounds).
$6^{\text {th }}$ week
Put-call parity, early exercise. Elementary trading strategies (involving a single option and a stock).
$7^{\text {th }}$ week
Trading strategies involving options (spreads, combinations).
$8^{\text {th }}$ week
Option pricing in binary markets. Pricing of European options, hedging strategies, arbitrage-free valuation.
$9^{\text {th }}$ week
Binary and binomial markets. Pricing of American optionns.
$10^{\text {th }}$ week
Introduction to continuous time models. Volatility, the basics of Black-Scholes markets.
$11^{\text {th }}$ week
The Black-Scholes formula, and its applications, implied volatility.
$12^{\text {th }}$ week
Classification of risks. Basics of market risk management.
$13^{\text {th }}$ week
Greeks, delta hedging.
$14^{\text {th }}$ week
Estimation of option prices, approximations.

Requirements:

The students get a grade based on an end-term test, which contains numerical exercises, questions from practice.Grades: 0-49\% fail (mark 1), 50-59\% satisfactory (mark 2), 60-69 \% average (mark 3), $70-84 \%$ good (mark 4), $85-100$ excellent (mark 5), we use rounding up (e.g. 49.3% is satisfactory).

Person responsible for course: Dr. József Gáll, associate professor, PhD
Lecturer: Dr. Bernadett Aradi, assistant professor, PhD

Title of course: Financial mathematics I

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -

Further courses built on it: TTMME0406

Topics of course

Discrete time models of stock markets and options, pricing of options, risk measures, coherent measures, Value at Risk, Expected Shortfall, operational risk and its models based on compound distributions. Markowitz's mean-variance portfolio analysis, CAPM.

Literature

Compulsory:
Gáll, J., G. Pap and M. v. Zuijlen (2003): "Option Theory", https://gyires.inf.unideb.hu/mobiDiak/Gall-Jozsef/Option-theory/op2.pdf

Recommended:

- Harry H. Panjer: Operational Risk: Modeling Analytics, Wiley, 2006.
- Musiela, M. and Rutkowsky, M.: Martingale Methods in Financial Modelling, 2nd edition, Springer, 2005.

Schedule:

$I^{s t}$ week
Conditional expected value, martingales, related properties and theorems.
$2^{\text {nd }}$ week
Financial assets markets, derivatives. Discrete time markets, basic notions.
$3^{\text {rd }}$ week
Arbitrage.
$4^{\text {th }}$ week
Arbitrage.
$5^{\text {th }}$ week
Market completeness.
$6^{\text {th }}$ week
Fundamental theorems of option pricing.

$$
7^{\text {th }} \text { week }
$$

Further option pricing theorems and cases.
$8^{\text {th }}$ week
Basic properties of risk measures, Value at Risk.
$9^{\text {th }}$ week
Basic properties of risk measures, Expected shortfall.
$10^{\text {th }}$ week
Operational risk. Compound distributions, AMA models and related estimations.
$11^{\text {th }}$ week
Mean-variance portfolio analysis.
$12^{\text {th }}$ week
Mean-variance portfolio analysis.
$13^{\text {th }}$ week
CAPM.
$14^{\text {th }}$ week
Summary of models, limitations of the models, discussion on the application.

Requirements:

The students get a grade based on an oral exam that includes the theoretical results (theorems, models, proofs) discussed in the term. .

Person responsible for course: Dr. József Gáll, associate professor, PhD
Lecturer: Dr. József Gáll, associate professor, PhD

Title of course: Financial mathematics I
Code: TTMMG0405
Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade
Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory:
- home assignment: 16 hours
- preparation for the exam: 16 hours

Total: 60 hours
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Discrete time models of stock markets and options pricing, risk measures, coherent measures, Value at Risk, Expected Shortfall, operational risk and its models based on composite distributions. Markowitztype mean-variance portfolio analysis, CAPM.

Literature

Compulsory:

Gáll, J., G. Pap and M. v. Zuijlen (2003): "Option Theory", https://gyires.inf.unideb.hu/mobiDiak/Gall-Jozsef/Option-theory/op2.pdf

Recommended:

Harry H. Panjer: Operational Risk: Modeling Analytics, Wiley, 2006.
Musiela, M. and Rutkowsky, M.: Martingale Methods in Financial Modelling, 2nd edition, Springer, 2005.

Schedule:

$I^{\text {st }}$ week
Conditional expected value, martingales, related main theorems, properties.
$2^{\text {nd }}$ week
Markets of financial assets, derivatives. Discrete time markets, basic notions.
$3^{\text {rd }}$ week
Arbitrage.
$4^{\text {th }}$ week
Arbitrage.
$5^{\text {th }}$ week
Market completeness.
$6^{\text {th }}$ week
Fundamental theorems of option pricing.

$7^{\text {th }}$ week

Option pricing, further markets and cases.
$8^{\text {th }}$ week
Basic properties of risk measures, Value at Risk.
$9^{\text {th }}$ week
Basic properties of risk measures, Expected shortfall.
$10^{\text {th }}$ week
Operational risk. Models based on compound distributions (AMA) and related estimations.
$11^{\text {th }}$ week
Mean-variance portfolio analysis.
$12^{\text {th }}$ week
Mean-variance portfolio analysis.
$13^{\text {th }}$ week
CAPM.
$14^{\text {th }}$ week
Summary, discussion on the application of the models at issue.

Requirements:

The students get a grade based on an end-term test, which contains numerical exercises, questions from practice.
Grades: $0-49 \%$ fail (mark 1), 50-59\% satisfactory (mark 2), 60-69 \% average (mark 3), 70$84 \%$ good (mark 4), 85-100 excellent (mark 5), we use rounding up (e.g. 49.3% is satisfactory).

Person responsible for course: Dr. József Gáll, associate professor, PhD
Lecturer: Dr. Bernadett Aradi, assistant professor, PhD

Title of course: Introduction to Finance

Type of teaching, contact hours

```
- lecture: 2 hours/week
- practice: 2 hours/week
```

- laboratory:

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: 28
- laboratory:
- home assignment: 30
- preparation for the exam: 64 hours

Total: 150 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s):

Further courses built on it:

Topics of course

Basic notions of finances and financial markets, time value of money, methods of calculating present value, other fundamental financial statements, financial statement frauds based on financial and market data, bonds and shares and basic methods of the pricing, internal rate of return, elementary questions on investment.

Literature

Compulsory:

Brealey, R. and Myers, S.: Principles of Corporate Finace, Concize Edition, McGraw Hill Higher Education, 2010.

Recommended:

Ross, S. A. - Westerfield, R. W. - Jordan, B. D.: Essentials of Corporate Finance, Mcgraw-Hill/Irwin, 2007.

Block, B. S.-Hirt, G. A.: Foundations of Financial Management, Mcgraw-Hill/Irwin, 2001.
Brigham, E. F. - Ehrhardt, M .C.: Financial Management, Theory and Practice, Harcourt College Publishers, 2002.

Schedule:

$I^{\text {st }}$ week
Basic (introductory) notions of finance.
$2^{\text {nd }}$ week
Financial markets, the role of the financial manager, financial tasks in a corporation.
$3^{\text {rd }}$ week
Cash flows, the time value of money.
$4^{\text {th }}$ week
Net present value and its applications.
$5^{\text {th }}$ week
Annuities, perpetuities, compounding conventions.
$6^{\text {th }}$ week
Bonds and bond markets.
$7^{\text {th }}$ week
Valuation of bonds.
$8^{\text {th }}$ week
Stocks and stock markets.
$9^{\text {th }}$ week
Valuation of stocks.
$10^{\text {th }}$ week
NPV versus other criteria for financial decision making.
$11^{\text {th }}$ week
Internal rate of return, rate of return calculations.
$12^{\text {th }}$ week
Project analysis, investment decisions based on NPV.
$13^{\text {th }}$ week
The analysis of financial statements by financial ratios.
$14^{\text {th }}$ week
Financial ratios and their applications.

Requirements:

The student can choose a 'two part' exam. In this case the results of the two test papers are included in the final grade ($50 \%-50 \%$). The first test of the 'two part' exam will be in the middle of the semester, whereas the second will take place at the end of the semester or in the first exam week. The tests include both theoretical questions and practical exercises. Further exams (for those who do not choose the two part exam opportunity or those who fail it) will be 'one part' exams (in the exam period), i.e. all chapters covered in the course will be required. The 'two part' exam cannot be repeated partially (i.e. only one part of it cannot be rewritten), only the whole exam can be rewritten in the exam period (as a 'one part' exam).

The students may miss at most 3 seminars. In case of missing more than 3 seminars the seminar is not completed, hence the course is not completed. For this, a class attendance list will be made each week, which can be signed by the students only in the first 10 minutes of the seminar. To complete the seminar requirements the students are given some home assignments in the seminars which are discussed in the next seminars.

Grades: 0-49\% fail (mark 1), 50-59\% satisfactory (mark 2), 60-69 \% average (mark 3), 70$84 \%$ good (mark 4), 85-100 excellent (mark 5), we use rounding up (e.g. 49.3% is satisfactory).

Person responsible for course: Dr. József Gáll, associate professor, PhD
Lecturer: Dr. József Gáll, associate professor, PhD

Title of course: Microeconomics

Type of teaching, contact hours

```
- lecture: 2 hours/week
- practice: 2 hours/week
```

- laboratory:

Evaluation: exam
Year, semester: $1^{\text {st }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: TTMME0903 Macroeconomics

Topics of course

The methodology of microeconomics, consumer theory, production theory and costs, profitmaximization on the competitive and monopoly market, welfare consequences of the monopoly.

Literature

Compulsory:

Besanko, David - Breautigam, Ronald R.: Microeconomics. Third Edition (International Student version). John Wiley and Sons, Inc., New York, 2008.
Besanko, David - Breautigam, Ronald R.: Microeconomics. Study Guide. Third Edition. John Wiley and Sons, Inc., New York, 2008.

Recommended:

Schedule:

$l^{\text {st }}$ week
Principles of microeconomics, equilibrium analysis - graphical treatment
$2^{\text {nd }}$ week
Price elasticity and other elasticities
$3^{\text {rd }}$ week
Consumer preferences and utility
$4^{\text {th }}$ week
The budget constraint
$5^{\text {th }}$ week
Consumer choice
$6^{\text {th }}$ week
Individual demand, consumer surplus and market demand
$7^{\text {th }}$ week
Production function
$8^{\text {th }}$ week
Costs
$9^{\text {th }}$ week
Cost-minimization

$10^{\text {th }}$ week
Perfect competition I
$11^{\text {th }}$ week
Perfect competition II, long-run supply
$12^{\text {th }}$ week
Monopoly
$13^{\text {th }}$ week
The welfare economics of monopoly
$14^{\text {th }}$ week
Summary
Requirements:
The exam is a written test which will be evaluated according to the following grading schedule:
$0-50 \%-$ fail (1)
$50 \%+1$ point - $63 \%-$ pass (2)
$64 \%-75 \%-$ satisfactory (3)
$76 \%-86 \% ~-~ g o o d ~(4) ~$
$87 \%-100 \% ~-~ e x c e l l e n t ~(5) ~$
Person responsible for course: Prof. Dr. Judit Kapás, university professor, PhD
Lecturer: Prof. Dr. Judit Kapás, university professor, PhD

Title of course: Econometrics

Type of teaching, contact hours

```
- lecture: 2 hours/week
- practice: -
- laboratory: 1 hour/week
```

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory: 14 hours
- home assignment: 18 hours
- preparation for the exam: 60 hours

Total: 120 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMME0403
Further courses built on it: -

Topics of course

Topics of econometrics. Regression models: the OLS estimate, goodness-of-fitting, indices, hypothesis testing. Autocorrelation, multicollinearity. Dummy and truncated variables. Simultaneous econometrics models. Regression models for time series. Case studies. Regression models in R.

Literature

- G. S. Maddala, K. Lahiri: Introduction to Econometrics. 4th Edition. Wiley, 2009.
- R. Ramanathan: Statistical Methods in Econometrics. Academic Press, 1993.
- W. H. Greene: Econometric Analysis. 7th Edition.Pearson, 2012.
- C. Kleiber, A. Zeileis: Applied Econometrics with R, Springer, 2008.

Schedule:

$I^{s t}$ week
Topics and history of econometrics. Elements of econometric models. Statistics with R.
$2^{\text {nd }}$ week
Simple linear regression, estimation of parameters, confidence intervals. Simple linear regression with
R.
$3^{\text {rd }}$ week
Testing of hypotheses and analysis of variance in simple linear regression models. Nonlinear models.
$4^{\text {th }}$ week
Multiple linear regression models. Partial and multiple correlations. Multiple linear regression models with R.
$5^{\text {th }}$ week
Testing of hypotheses and goodness of fit in linear models. Case studies.
$6^{\text {th }}$ week
Model building, tests of stability. Case studies.
$7^{\text {th }}$ week

Heteroskedasticity. Implementation of various tests for heteroscedasticity in R.
$8^{\text {th }}$ week
Autocorrelation. Case studies.
$9^{\text {th }}$ week
Multicollinearity. Case studies.
$10^{\text {th }}$ week
Dummy variables. Logit and probit models. Case studies.
$11^{\text {th }}$ week
Simultaneous equation models. Case studies.
$12^{\text {th }}$ week
Regression models for time series. Case studies.
$13^{\text {th }}$ week
Case studies.
$14^{\text {th }}$ week
Project presentations.

Requirements:

- for a signature

Attendance of lectures is recommended, but not compulsory. Attendance of laboratories is compulsory. Students have to present an individual project.

- for a grade

The course ends in an oral examination, where the knowledge of practical applications is a fundamental requirement.

Person responsible for course: Dr. Sándor Baran, associate professor, PhD
Lecturer: Dr. Sándor Baran, associate professor, PhD

Title of course: Financial accounting
Code: TTMME0905
Type of teaching, contact hours

- lecture: 2 hours/week
- practice: 2 hours/week
- laboratory:

Evaluation: exam
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Notion of public accountancy. Steps in the accounting process. Accounting system, practice of public accountancy. International Financial Reporting Standards (IFRS). The content of financial statements and their presentation.

Literature

Schedule:

$1^{s t}$ week
$2^{\text {nd }}$ week
$3^{\text {rd }}$ week
$4^{\text {th }}$ week
$5^{\text {th }}$ week
$6^{\text {th }}$ week
$7^{\text {th }}$ week
$8^{\text {th }}$ week
$9^{\text {th }}$ week
$10^{\text {th }}$ week
$11^{\text {lh }}$ week
$12^{\text {th }}$ week
$13^{\text {th }}$ week
$14^{\text {th }}$ week

Requirements:

Person responsible for course: Kornél Tóth, senior assistant professor
Lecturer: Kornél Tóth, senior assistant professor

Title of course: Game theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

The normal form of non-cooperative games. The notion and existence of Nash equilibrium. The best response mapping. Fixed point theorems in game theory. Analysis of finite games, strictly dominated strategies, bi-matrix representation of finite two-player games. Mixed extension of finite games. Twoplayer zero-sum games, matrix games. Symmetric games. Games in extensive form. Combinatorial games, Grundy's games, Grundy numbering. Cooperative games, the value of the coalition. Nash's model of bargaining.

Literature

Compulsory:

- J. H. Conway: On Numbers and Games, Academic Press, 1976. ISBN 1568811276
- Martin J. Osborne: An Introduction to Game Theory, Oxford University Press, 2003. ISBN 0195128958
Recommended:
- Kim C. Border: Fixed point theorems with application to economic and game theory, Cambridge University Press, Cambridge UK, 1985. ISBN 0-521-38808-2
- J. von Neumann, O. Morgenstern: Theory of games and economic behavior, Princeton University Press, Princeton, New Jersey, 1944. ISBN 9780691130613

Schedule:

$I^{s t}$ week
The normal form of non-cooperative games. Strategies and strategy profiles. Utilities. The notion of Nash equilibrium. Strategically equivalent games. Bi-matrix representation of finite 2-player games.
$2^{\text {nd }}$ week
Finite games. Iterative elimination of strictly dominated actions.
$3^{\text {rd }}$ week
Transposable equilibrium points. Strictly competitive 2-player games. The value of the game.
$4^{\text {th }}$ week

Zero-sum games with 2 players. Equilibrium and the mini-max principle. Equilibrium strategies in symmetric zero-sum games with 2 players.
$5^{\text {th }}$ week
Sufficient conditions for the existence of Nash equilibrium. The best response mapping.
$6^{\text {th }}$ week
Extension of finite games through mixed strategies. Existence of (symmetric) Nash equilibrium.
$7^{\text {th }}$ week
Matrix games.
$8^{\text {th }}$ week
Extensive games. Decision tree. Sets of imperfect information.
$9^{\text {th }}$ week
Combinatorial game theory. Game of nim. Grundy numbers, the mex function. Direct sums.
$10^{\text {th }}$ week
Infinite games: the Banach-Mazur game (with intervals).
$11^{\text {th }}$ week
Finite matching problems I: Stable redistribution of properties. Construction of the solution in terms of graph representation.
$12^{\text {th }}$ week
Finite matching problems II: Algorithms for stable marriages.
$13^{\text {th }}$ week
Coalitions. Examples, valuation of coalitions.
$14^{\text {th }}$ week
Bargaining games with 2 players. Nash solution.

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.

- for a grade

The course ends in an oral examination. Exam topics are identical to those of the individual lectures. The grade is based on the presentation of the designated exam topic and the answers to the questions (on various topics) of the examiner.
Solving theoretical problems (posed during lectures) before or during the exam is taken in consideration as answer to non-basic exam questions (like proofs of theorems or lemmas).

Person responsible for course: Dr. Zoltán Boros, associate professor, PhD
Lecturer: Dr. Zoltán Boros, associate professor, PhD

Title of course: Game theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 28 hours
- laboratory: -
- home assignment: 24 hours
- preparation for the test: 8 hours

Total: 60 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -

Further courses built on it: -

Topics of course

The normal form of non-cooperative games. The notion and existence of Nash equilibrium. The best response mapping. Fixed point theorems in game theory. Analysis of finite games, strictly dominated strategies, bimatrix representation of finite two-player games. Application of the game theoretic approach to simple market models (duopoly, oligopoly). Mixed extension of finite games. Two-player zero-sum games, matrix games. Games in extensive form. Combinatorial games, Grundy's games, Grundy numbering. Cooperative games, the value of the coalition. Finite matching problems.

Literature

Compulsory:

- J. H. Conway: On Numbers and Games, Academic Press, 1976. ISBN 1568811276
- Martin J. Osborne: An Introduction to Game Theory, Oxford University Press, 2003. ISBN 0195128958
Recommended:
- Kim C. Border: Fixed point theorems with application to economic and game theory, Cambridge University Press, Cambridge UK, 1985. ISBN 0-521-38808-2
J. von Neumann, O. Morgenstern: Theory of games and economic behavior, Princeton University Press, Princeton, New Jersey, 1944. ISBN 9780691130613

Schedule:

$I^{s t}$ week
The normal form of non-cooperative games. Strategies and strategy profiles. Utilities. The notion of Nash equilibrium. Examples. Bi-matrix representation of finite 2-player games.
$2^{\text {nd }}$ week
Finite games. Iterative elimination of strictly dominated actions.
$3^{\text {rd }}$ week
Discrete and continuous sharing games (heritage, crazy drivers).
$4^{\text {th }}$ week

Zero-sum games with 2 players. Equilibrium and the mini-max principle. Examples.
$5^{\text {th }}$ week
The best response mapping and the existence of Nash equilibrium. Application of the game theoretic approach to simple market models (duopoly, oligopoly).
$6^{\text {th }}$ week
Extension of finite games through mixed strategies.
$7^{\text {th }}$ week
Matrix games.
$8^{\text {th }}$ week
Extensive games. Decision tree. Deterministic and partially random examples.
$9^{\text {th }}$ week
Combinatorial game theory. Game of nim. Grundy numbers, the mex function. Direct sums.
$10^{\text {th }}$ week
Infinite games: the Banach-Mazur game (with intervals).
$11^{\text {th }}$ week
Finite matching problems I: Stable redistribution of properties. Construction of the solution in terms of graph representation.
$12^{\text {th }}$ week
Finite matching problems II: Algorithms for stable marriages.
$13^{\text {th }}$ week
End-term test.
$14^{\text {th }}$ week
Examples, valuation of coalitions.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

At the end of the semester there is a test in the $13^{\text {th }}$ week. Students have to sit for the test.

- for a grade

The seminar grade is based on the result of the end-term test. Excellent contributions to practice classes may be taken into consideration by the tutor with extra points.
Based on the score of the test (and the extra points received during the semester), the grade for the seminar is given according to the following table:

Score $(\%)$	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-87$	good (4)
$88-100$	excellent (5)

If the score of the test is below 50%, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Zoltán Boros, associate professor, PhD
Lecturer: Dr. Zoltán Boros, associate professor, PhD

Title of course: Macroeconomics

Type of teaching, contact hours

```
- lecture: 2 hours/week
- practice: 2 hours/week
```

- laboratory:

Evaluation: exam

Year, semester: 2 $^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMME0902

Further courses built on it: -

Topics of course

Central problems in macroeconomics. Principles of measuring aggregates: economic cycle and the GDP, nominal and real GDP, applications of GDP, the GDP-deflator and the consumer price index, measuring unemployment. Economy in the long run: equilibrium of the goods market, equilibrium of the factor market and the distribution of income, theories of natural unemployment. Importance of money and inflation: the functions of money and the money supply, quantity theory of money, money demand, costs of inflation. Short run models of economy: the Keynesian cross, the IS-LM model, models of aggregate supply and aggregate demand. Relation between short term and long term deductions: the expectations-augmented Philips curve and the Friedman and Modigliani-type theory of consumption functions.

Literature

Compulsory:

Mankiw, Gregory: Macroeconomics. Sixth Edition. Worth Publisher, New York, 2007.
Kaufman, Roger T.: Student Guide and Workbook for Use with Macroeconomics. Worth Publisher, New York, 2007.
Recommended:
Williamson, Stephen D. (2014). Macroeconomics. Fifth (International) Edition, Pearson

Schedule:

$1^{s t}$ week
The fundamental questions of macroeconomics. The data of macroeconomics: production and income.
Mankiw, pp. 1-15, Kaufman, pp. 1-8., Mankiw, pp. 16-30., Kaufman, pp. 9-18.
$2^{\text {nd }}$ week
The data of macroeconomics: inflation and unemployment. The economy in the long run: production and the division of income.
Mankiw, pp. 30-43., Kaufman, pp. 19-29., Mankiw, pp. 44-59., Kaufman, pp. 30-45.
$3^{\text {rd }}$ week:
The economy in the long run: demand and equilibrium on market for goods and services.
Mankiw, pp. 59-75., Kaufman, pp. 46-58.
$4^{\text {th }}$ week
Money supply.
Mankiw, pp. 76-83, 510-517., Kaufman, pp. 59-64, 357-367.

$5^{\text {th }}$ week

The quantity theory of money, and the Fisher effect. The demand for money, the costs of inflation.
Mankiw, pp. 83-94., Kaufman, pp. 64-68., Mankiw, pp. 95-111., Kaufman, pp. 68-79.
$6^{\text {th }}$ week
The natural rate of unemployment: job search. The natural rate of unemployment: real-wage rigidity Mankiw, pp. 159-165., Kaufman, pp. 111-122., Mankiw, pp. 165-184., Kaufman, pp. 111-122.
$7^{\text {th }}$ week
Introduction to economic fluctuations.
Mankiw, pp. 252-277., Kaufman, pp. 159-174.
$8^{\text {th }}$ week
Aggregate demand: the Keynesian Cross and the IS curve.
Mankiw, pp. 278-292., Kaufman, pp. 175-198., Mankiw, pp. 292-298., Kaufman, pp. 199-204.
$9^{\text {th }}$ week
Short-run equilibrium in the IS-LM model.
Mankiw, pp. 299-313., Kaufman, pp. 205-220.
$10^{\text {th }}$ week
The IS-LM model as a theory of aggregate demand I.
Mankiw, pp. 313-328., Kaufman, pp. 220-244.
$11^{\text {th }}$ week
The IS-LM model as a theory of aggregate demand II.
Mankiw, pp. 313-328., Kaufman, pp. 220-244.
$12^{\text {th }}$ week
Aggregate supply.
Mankiw, pp. 373-380., Kaufman, pp. 267-282.
$13^{\text {th }}$ week
The Phillips curve.
Mankiw, pp. 385-400., Kaufman, pp. 282-290.
$14^{\text {th }}$ week
Summary

Requirements:

The exam is a written test which will be evaluated according to the following grading schedule: 0 - 50% - fail (1)
$50 \%+1$ point -63% - pass (2)
$64 \%-75 \%$ - satisfactory (3)
$76 \%-86 \%$ - good (4)
$87 \%-100 \%$ - excellent (5)

Person responsible for course: Dr. Pál Czeglédi, associate professor, PhD
Lecturer: Dr. Pál Czeglédi, associate professor, PhD

Title of course: Insurance mathematics

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: --
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice:
- laboratory:
- home assignment: 20
- preparation for the exam: 42 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s):
Further courses built on it: -

Topics of course

Notion of insurance, classification of insurances, classical non-life insurance models, methods for determining total loss, related regression and statistical questions. Pricing. Life and reinsurances, annuity calculation, pricing of life insurances.

Literature

Compulsory:

Straub, Erwin: Non-life Insurance Mathematics, Springer-Verlag, 1980.
Mikosch, Thomas: Non-life Insurance Mathematics, Springer, Berlin, Heidelberg, New York, 2006.
Recommended:

Schedule:

$I^{\text {st }}$ week
Basic notions of insurance and insurance contracts.
$2^{\text {nd }}$ week
Non-life insurance models for the aggregate claim.
$3^{\text {rd }}$ week
Recursion methods for the total claim amount, the De Pril algorithm.
$4^{\text {th }}$ week
Berry-Essen inequalities and estimation of the distribution of the total claim by normal distribution.
$5^{\text {th }}$ week
Moment generating functions, generator functions, Laplace transform.
$6^{\text {th }}$ week
Compound distributions. Distributions for the number of claims. (a,b,0) distributions.
$7^{\text {th }}$ week

Fitting methods for the distribution of claim numbers.
$8^{\text {th }}$ week
Fitting problems for the distribution of the individual claims. The role of inflation and retention.
$9^{\text {th }}$ week
Methods for the calculation of the total claim amount, Panjer's algorithm.
$10^{\text {th }}$ week
Prices and fees. Further problems in non-life insurance.
$11^{\text {th }}$ week
Basics of life insurance.
$12^{\text {th }}$ week
Perpetuity and annuity based calculations.
$13^{\text {th }}$ week
Reinsurance contracts. Main types.
$14^{\text {th }}$ week
Summary, further examples.

Requirements:

The students are given home assignments during the semester, it is required to solve them for the signature.
The course can be completed by an oral exam at which the students are given both practical exercises and theoretical questions.

Person responsible for course: Dr. Bernadett Aradi, assistant professor, PhD
Lecturer: Dr. József Gáll, associate professor, PhD,
Dr. Bernadett Aradi, assistant professor, PhD

Title of course: Financial mathematics II

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam

Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: -
- preparation for the exam: 62 hours

Total: 90 hours
Year, semester: $2^{\text {nd }}$ year, $1^{\text {st }}$ semester
Its prerequisite(s): TTMME0405

Further courses built on it: -

Topics of course

Utility theory, expected utility, axioms and criticism in related literature. Risk aversion and its measuring, optimal portfolios. Contionuous time shares and interest-rate models, analysis of arbitrage-freeness, pricing of shares, bonds and interest-rate derivatives and models.

Literature

Compulsory:

Gáll, J., G. Pap and M. v. Zuijlen (2005): "An introduction to portfolio management", https://gyires.inf.unideb.hu/mobiDiak/Gall-Jozsef/An-introductionto-portfolio-management/portfen.pdf
Musiela, M. and Rutkowski, M.: Martingale Methods in Financial Modeling, Springer-Verlag, Berlin, Heidelberg, 2005.
Brigo, D. and Mercurio, F.: Interest Rate Models - Theory and Practice: With Smile, Inflation and Credit, Springer, Berlin, Heidelberg New York, 2006

Recommended:

Björk, T.: Arbitrage Theory in Continuous Time, Oxford University Press, Oxford/New York, 1998.

Schedule:

$I^{s t}$ week
Utility theory, axioms.
$2^{\text {nd }}$ week
Expected utility and axioms.
$3^{r d}$ week
Expected utility, fundamental theorems.
$4^{\text {th }}$ week
Risk aversion and its measures.
$5^{\text {th }}$ week

```
Expected utility based portfolio optimisation, demand of financial assets.
Gh}\mathrm{ week
Continuous time financial market models, basic notions.
7h}\mathrm{ week
Change of measure in continuous time, absence of arbitrage.
8th}\mathrm{ week
Black-Scholes market, and Black-Scholes formula.
9,
Further models and problems for option pricing in continuous time.
10,h}\mathrm{ week
Bond market, yield curves, interest rates.
11 th week
Arbitrage free family of bond prices. Fundamental theorems.
12 th week
Change of measure in bond markets, forward measure.
13 th week
Basics of short interest rate models.
14 th week
Problems in specific short rate models.
```


Requirements:

The course can be completed by an oral exam that contains theoretical questions (theorems, proof, models).

Person responsible for course: Dr. József Gáll, associate professor, PhD
Lecturer: Dr. József Gáll, associate professor, PhD

Title of course: Finite Geometries and Coding Theory

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: -
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: -
- laboratory:
- home assignment: 22 hours
- preparation for the exam: 40 hours

Total: 90 hours
Year, semester: $1^{\text {st }}$ or $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Finite incidence structures: projective and affine planes, Galois geometry. Combinatorial properties of finite projective planes. Arcs and ovals. Finite projective planes and algebraic structures. Finite projective and affine planes over a field. Examples of combinatorial point sets on finite projective plane. Further incidence structures: block design and Steiner-system. Applications of finite geometry in coding theory.

Literature

Compulsory:
A. Beutelspacher: Projective Geometry - From Foundations to Applications, Cambridge, 1998.

Recommended:
J. W. P. Hirschfeld: Projective Geometries Over Finite Fields, Oxford, 1998.
D. R. Hughes, F. C. Piper: Projective Planes, Springer, 1973.
S. E. Payne: Topics in Finite Geometry, 2007.

Schedule:

$I^{s t}$ week
Affine and projective planes.
$2^{\text {nd }}$ week
Affine and projective planes over finite fields. Collineation groups of field planes.
$3^{\text {rd }}$ week
Cyclic planes and difference sets.
$4^{\text {th }}$ week
Polarities and conics. Hermite-curves in projective planes over finite fields.
$5^{\text {th }}$ week
Blocking sets. Subplanes.
$6^{\text {th }}$ week

Arcs, ovals, hyperovals. The Theorem of Segre.
$7^{\text {th }}$ week
Coordinating of projective planes. Connections of the algebraic properties of the coordinating structure and the geometric properties of the projective plane.
$8^{\text {th }}$ week
Latin squares.
$9^{\text {th }}$ week
Higher dimensional projective spaces. Galois geometries.
$10^{\text {th }}$ week
Block designs.
$11^{\text {th }}$ week
Steiner Triple Systems and Steiner Quadruple Systems.
$12^{\text {th }}$ week
Basics of coding theory. Constructions of codes from finite planes.
$13^{\text {th }}$ week
MDS codes and arcs of finite projective planes.
$14^{\text {th }}$ week
Applications of finite geometries in cryptography.

Requirements:

Only students who have signature from the practical part can take part of the exam. The exam is written.
The grade is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-62$	pass (2)
$63-74$	satisfactory (3)
$75-86$	good (4)
$87-100$	excellent (5)

Person responsible for course: Dr. Zoltán Szilasi, senior assistant lecturer, PhD
Lecturer: Dr. Zoltán Szilasi, senior assistant lecturer, PhD

Title of course: Finite Geometries and Coding Theory

Type of teaching, contact hours

```
- lecture: -
- practice: 2 hours/week
```

- laboratory: -

Evaluation: mid-semester grade

Workload (estimated), divided into contact hours:

- lecture: -
- practice: 42 hours
- laboratory:
- home assignment: 18 hours
- preparation for the exam:

Total: 60 hours
Year, semester: $1^{\text {st }}$ or $2^{\text {nd }}$ year, $2^{\text {nd }}$ semester
Its prerequisite(s): -
Further courses built on it: -

Topics of course

Finite incidence structures: projective and affine planes, Galois geometry. Combinatorial properties of finite projective planes. Arcs and ovals. Finite projective planes and algebraic structures. Finite projective and affine planes over a field. Examples of combinatorial point sets on finite projective plane. Further incidence structures: block design and Steiner-system. Applications of finite geometry in coding theory.

Literature

Compulsory:
A. Beutelspacher: Projective Geometry - From Foundations to Applications, Cambridge, 1998.

Recommended:
J. W. P. Hirschfeld: Projective Geometries Over Finite Fields, Oxford, 1998.
D. R. Hughes, F. C. Piper: Projective Planes, Springer, 1973.
S. E. Payne: Topics in Finite Geometry, 2007.

Schedule:

$1^{s t}$ week
Minimal model of affine planes, Fano plane. Geometric construction of affine and projective planes over small fields.
$2^{\text {nd }}$ week
Analytic problems in projective planes over finite fields.
$3^{\text {rd }}$ week
Constructions of cyclic planes and difference sets.
$4^{\text {th }}$ week
Applications of finite affine and projective planes in solving combinatorical problems.
$5^{\text {th }}$ week
Examples of blocking sets.
$6^{\text {th }}$ week

Examples of arcs, ovals and hyperovals.
$7^{\text {th }}$ week
Ternary rings and quasifields - proofs of some simple properties.
$8^{\text {th }}$ week
Examples of quasifields.
$9^{\text {th }}$ week
Applications of Plücker coordinates.
$10^{\text {th }}$ week
Examples of block designs and inversive planes.
$11^{\text {th }}$ week
Constructions of Steiner Triple Systems.
$12^{\text {th }}$ week
Constructions of Steiner Quadruple Systems.
$13^{\text {th }}$ week
Constuctions of finite codes using finite geometries.
$14^{\text {th }}$ week
Test.

Requirements:

- for a signature

Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

- for a grade

During the semester one test is written. The grade is given according to the following table:

Score	Grade
$0-49$	fail (1)
$50-59$	pass (2)
$60-74$	satisfactory (3)
$75-84$	good (4)
$85-100$	excellent (5)

Students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Dr. Zoltán Szilasi, senior assistant lecturer, PhD
Lecturer: Dr. Zoltán Szilasi, senior assistant lecturer, PhD

Title of course: Fourier series

Type of teaching, contact hours

- lecture: 2 hours/week
- practice: 1 hours/week
- laboratory: -

Evaluation: exam
Workload (estimated), divided into contact hours:

- lecture: 28 hours
- practice: 14 hours
- laboratory:
- home assignment: 26 hours
- preparation for the exam: 52 hours

Total: 120 hours
Year, semester: $2^{\text {nd }}$ year, 1st semester
Its prerequisite(s): -

Further courses built on it:

Topics of course

The interpolation theorems of Marcinkiewicz, classical and complex trigonometric systems, the theorems of Weierstrass, the density of trigonometric polynomials, the Riemann-Lebesgue lemma, Dirichlet kernels, Fejér kernels, norm convergence of Fejér means, the Calderon-Zygmund decomposition, Hilbert operator, Fejér-Lebesgue theorem, the Dini and the Lipschitz criteria for convergence, the norm convergence of Fourier partial sum operators, Fourier series with respect to Walsh systems.

Literature

Compulsory:-

Recommended:
N. K. Bary: A Treatise on Trigonometric Series, Elsevier, 2014.
A. Zygmund, Trigonometric Series Vol I., Cambridge University Press, 2002.

Schedule:

$1^{s t}$ week The interpolation theorems of Marcinkiewicz.
$2^{\text {nd }}$ week The classical and complex trigonometric system, the approximation theorems of Weierstrass.
$3^{r d}$ week Trigonometric polynomials, and their density in Lebesgue spaces.
$4^{\text {th }}$ week The Riemann-Lebesgue lemma, the Dirichlet kernels and their fundamental properties,
$5^{\text {th }}$ week Fejér kernel functions and their fundamental properties.
$\sigma^{\text {th }}$ week Norm convergence of Fejér means in various spaces.
$7^{\text {th }}$ week The Calderon-Zygmund decomposition lemma.
$8^{\text {th }}$ week The Hilbert operator and some of its properties.
$9^{\text {th }}$ week The maximal operator of the Fejér means and its quasi-locality.
$10^{\text {th }}$ week The Fejér-Lebesgue theorem with respect to almost everywhere convergence
$11^{\text {th }}$ week Riemann's first localization theorem, Dini and Lipschitz convergence criteria
$12^{\text {th }}$ week Partial sum operators of Fourier series, their uniform weak and strong type boundedness.
$13^{\text {th }}$ week Norm convergence of trigonometric Fourier series in Lebesgue spaces.
$14^{\text {th }}$ week Some convergence and divergence properties of other orthonormal systems, the Walsh system.

Requirements:

- for a signature

Attendance at lectures is recommended, but not compulsory.
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can't make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct doesn't meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the mid-term test in the $7^{\text {th }}$ week and the end-term test in the $14^{\text {th }}$ week. Students have to sit for the tests.

- for a grade

The course ends in an examination.
The minimum requirement for the average of the mid-term and end-term tests and also for the examination is 50%. The grade for the examination is given according to the following table, where the score is $(\mathrm{X}+\mathrm{Y}+4 \mathrm{Z}) / 6$, where X, Y are the scores of the tests and Z is the score of the performance on the examination.

Score	Grade
$0-49$	fail (1)
$50-61$	pass (2)
$62-74$	satisfactory (3)
$75-87$	good (4)
$88-100$	excellent (5)

If the average of the scores of the tests is below 50 , students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

Person responsible for course: Prof. Dr. György Gát, university professor, DSc
Lecturer: Prof. Dr. György Gát professor, DSc

